Studies included in the thesis
- V. Boeva, M. Angelova, V. M. Devagiri, and E. Tsiporkova. “Bipartite Split-Merge Evolutionary Clustering”. In: Agents and Artificial Intelligence. Ed. by J. van den Herik, A. P. Rocha, and L. Steels. Cham: Springer International Publishing, 2019, pp. 204–223. DOI: 10.1007/978-3-030-37494-5_11
- V. M. Devagiri, V. Boeva, and E. Tsiporkova. “Split-Merge Evolutionary Clustering for Multi-View Streaming Data”. In: Procedia Computer Science 176 (2020). Knowledge-Based and Intelligent Information Engineering Systems: Proceedings of the 24th International Conference KES2020, pp. 460–469. ISSN: 1877-0509. DOI: 10.1016/j.procs.2020.08.048
- V. M. Devagiri, V. Boeva, and S. Abghari. “A Multi-view Clustering Approach for Analysis of Streaming Data”. In: Artificial Intelligence Applications and Innovations. Ed. by I. Maglogiannis, J. Macintyre, and L. Iliadis. Cham: Springer International Publishing, 2021, pp. 169–183. ISBN: 978-3-030-79150-6. DOI: 10.1007/978-3-030-79150-6_14
- V. M. Devagiri, V. Boeva, S. Abghari, F. Basiri, and N. Lavesson. “Multi-View Data Analysis Techniques for Monitoring Smart Building Systems”. In: Sensors 21.20 (2021). ISSN: 1424-8220. DOI: 10.3390/s21206775
- C. Åleskog, V. M. Devagiri, and V. Boeva. “A Graph-Based Multi-view Clustering Approach for Continuous Pattern Mining”. In: Recent Advancements in Multi-View Data Analytics. Ed. by W. Pedrycz and S.-M. Chen. Cham: Springer International Publishing, 2022, pp. 201–237. ISBN: 978-3-030-95239-6. DOI: 10.1007/978-3-030-95239-6_8
- V. M. Devagiri, V. Boeva, and S. Abghari. “Domain Adaptation Through Cluster Integration and Correlation”. In: 2022 IEEE International Conference on Data Mining Workshops (ICDMW). 2022, pp. 1–8. DOI: 10.1109/ICDMW58026.2022.00025
- V. M. Devagiri, V. Boeva, and S. Abghari. "A Domain Adaptation Technique through Cluster Boundary Integration". Evolving Systems. (under publication).
- V. M. Devagiri, P. Dagnely, V. Boeva and E. Tsiporkova. "Putting Sense into Multi-source Heterogeneous Data with Hypergraph Clustering Analysis". Accepted for the Symposium on Intelligent Data Analysis (IDA), Stockholm, Sweden, April 2024. DOI: 10.1007/978-3-031-58553-1_10
- M. Angelova, V. M. Devagiri, V. Boeva, P. Linde and N. Lavesson. "An Expertise Recommender System based on Data from Institutional Repository (DiVA)". Leslie Chan and Pierre Mounier (Eds.): Connecting the Knowledge Commons – from projects to sustainable infrastructure. OpenEdition Press, pp.135-149, 2019. DOI: 10.4000/books.oep.9078
- V. Boeva, M. Angelova, V. M. Devagiri, E. Tsiporkova, A Split-Merge Framework for Evolutionary Clustering, 31th Swedish AI Society Workshop SAIS 2019, Umeå, Sweden, June 2019.
- V. Boeva, E. Casalicchio, S. Abghari, A.A. Al-Saedi, V.M. Devagiri, A. Petef, P. Exner, A. Isberg. and M. Jasarevic. 2022. "Distributed and Adaptive Edge-based AI Models for Sensor Networks (DAISeN)". Position Papers of the 17th Conference on Computer Science and Intelligence Systems, Annals of Computer Science and Information Systems 31 (2022): 71-78. DOI: 10.15439/2022F267
Posters
- V. Boeva, M. Angelova, V. M. Devagiri and E. Tsiporkova. "Patient Profiling Using Evolutionary Clustering". ACM Celebration of Women in Computing: womENcourage 2019, Rome, Italy, September 2019.
- V. M. Devagiri, V. Boeva and S. Abghari. "A Domain Integration Bi-correlation Clustering". PhD Track, DSAA 2022
Other studies
- V. M. Devagiri and A. Cheddad. “Splicing forgery detection and the impact of image resolution”. In: 2017 9th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). 2017, pp. 1–6. DOI: 10.1109/ECAI.2017.8166431