
Blekinge Institute of Technology
Doctoral Dissertation Series No. 2024:06

ISSN 1653-2090
ISBN 978-91-7295-479-3

Mining Evolving and
Heterogeneous Data

Cluster-based Analysis Techniques

Vishnu Manasa Devagiri

DOCTORAL DISSERTATION
for the degree of Doctor of Philosophy at Blekinge Institute of Technology to be publicly

defended on May 22nd, 2024, at 09:00 in room J1630, Campus Gräsvik

Supervisors
Prof. Veselka Boeva, Blekinge Institute of Technology, Sweden
Prof. Niklas Lavesson, Blekinge Institute of Technology, Sweden

Faculty Opponent
Asst. Prof. Shehroz Khan, KITE, Toronto Rehabilitation Institute, Canada

Grading Committee
Prof. Ivan Koychev, Sofia University, Bulgaria

Assoc. Prof. Sindri Magnusson, Stockholm University, Sweden
Assoc. Prof. Farhana Zulkernine, Queen's University, Canada

Abstract
A large amount of data is generated from fields like IoT, smart monitoring applica-
tions, etc., raising demand for suitable data analysis and mining techniques. Data
produced through such systems have many distinct characteristics, like continuous
generation, evolving nature, multi-source origin, and heterogeneity, and in addition
are usually not annotated. Clustering is an unsupervised learning technique used to
group and analyze unlabeled data. Conventional clustering algorithms are unsuit-
able for dealing with data with the mentioned characteristics due to memory, com-
putational constraints, and their inability to handle the heterogeneous and evolving
nature of the data. Therefore, novel clustering approaches are needed to analyze and
interpret such challenging data.

This thesis focuses on building and studying advanced clustering algorithms that
can address the main challenges of today’s real-world data: evolving and heteroge-
neous nature. An evolving clustering approach capable of continuously updating
the generated clustering solution in the presence of new data is initially proposed,
which is later extended to address the challenges of multi-view data applications.
Multi-view or multi-source data presents the studied phenomenon or system from
different perspectives (views) and can reveal interesting knowledge that is invisible
when only one view is considered and analyzed. This has motivated us to continue
exploring data from different perspectives in several other studies of this thesis. Do-
main shift is another common problem when data is obtained from various devices
or locations, leading to a drop in the performance of machine learning models if they
are not adapted to the current domain (device, location, etc.). The thesis explores
the domain adaptation problem in a resource-constraint way using cluster integra-
tion techniques. A new hybrid clustering technique for analyzing the heterogeneous
data is also proposed. It produces homogeneous groups, facilitating continuous mon-
itoring and fault detection.

The algorithms and techniques proposed in this thesis are evaluated on various
data sets, including real-world data from industrial partners in domains like smart
building systems, smart logistics, and performance monitoring of industrial assets.
The obtained results demonstrated the robustness of the algorithms for modeling,
analyzing, and mining evolving data streams and/or heterogeneous data. They can
adequately adapt single and multi-view clustering models by continuously integrat-
ing newly arriving data.

Keywords: Domain Adaptation, Evolving Clustering, Heterogeneous Data, Multi-
View Clustering, Streaming Data

Blekinge Institute of Technology
Doctoral Dissertation Series No. 2024:06

Mining Evolving and
Heterogeneous Data

Cluster-based Analysis Techniques

Vishnu Manasa Devagiri

Doctoral Dissertation in Computer Science

Department of Computer Science
Blekinge Institute of Technology

SWEDEN

Copyright pp. 1-49 Vishnu Manasa Devagiri
Paper 1 © 2019 Springer Nature Switzerland AG
Paper 2 © 2020 The Author(s). Published by Elsevier B.V.
Paper 3 © 2021 IFIP International Federation for Information Processing
Paper 4 © 2021 The Author(s). Licensee MDPI, Basel, Switzerland.
Paper 5 © 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
Paper 6 © 2022 IEEE
Paper 7 © The Authors (Manuscript unpublished)
Paper 8 © 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

Blekinge Institute of Technology
Department of Computer Science

Blekinge Institute of Technology Doctoral Dissertation Series No. 2024:06
ISBN 978-91-7295-479-3
ISSN 1653-2090
urn:nbn:se:bth-26098

Printed in Sweden by Media-Tryck, Lund University, Lund 2024

”If we knew what we were doing, it would not be called research, would
it?”

Albert Einstein

Acknowledgements

I want to initially acknowledge my supervisors, Veselka Boeva and Niklas Lavesson.
Veselka, you have been a constant support for me throughout this journey. Thank you
for always having confidence in me, frommotivating me to take up PhD studies until
today. I would not have reached this point without you. You are always available
for discussions, regardless of the time. Niklas, your valuable inputs and ideas during
our discussions have helped me to look at things from a new perspective, and you
have always been active at sharing new opportunities to take up. The opportunity you
gave me to work with your research team during my Master’s has, in a way, been a
starting point for this journey; thank you.

Shahrooz, my mentor, coauthor, and friend. Thank you for always being there
to help and share your knowledge and experiences. Thanks to all my colleagues and
friends at BTH for the happy working environment and all the fun, discussions, and
encouragement.

Next, I want to acknowledge our collaborators from the industry, Farhad Basiri
(iquest AB), Andrej Petef (Sony), and Peter Exner (Sony). Thank you for sharing
the data and allocating your time to collaborate with us. Elena, Pierre, Michiel D.,
Annelies, Amir, and others at Sirris, Belgium. Thank you, guys, for being so wel-
coming and making it really easy for me to integrate during my visit. It has been a
good and fruitful learning experience. Those two months were some of the best days
of my PhD journey.

Finally, my family, thank you for encouraging and backingme in all my decisions,
for constantly believing in my potential even when I do not, and for motivating me
to achieve my dreams.

April 2024
Vishnu Manasa Devagiri

i

List of Papers

This thesis is a compilation of the following papers. The formatting of the papers is
changed to be adapted to the thesis.

Paper I
V. Boeva, M. Angelova, V. M. Devagiri, and E. Tsiporkova. “Bipartite Split-Merge
Evolutionary Clustering”. In: Agents and Artificial Intelligence. Ed. by J. van den
Herik, A. P. Rocha, and L. Steels. Cham: Springer International Publishing, 2019,
pp. 204–223. DOI: 10.1007/978-3-030-37494-5_11

Paper II
V. M. Devagiri, V. Boeva, and E. Tsiporkova. “Split-Merge Evolutionary Cluster-
ing for Multi-View Streaming Data”. In: Procedia Computer Science 176 (2020).
Knowledge-Based and Intelligent Information Engineering Systems: Proceedings of
the 24th International Conference KES2020, pp. 460–469. ISSN: 1877-0509. DOI:
10.1016/j.procs.2020.08.048

Paper III
V.M. Devagiri, V. Boeva, and S. Abghari. “A Multi-view Clustering Approach for
Analysis of Streaming Data”. In: Artificial Intelligence Applications and Innova-
tions. Ed. by I. Maglogiannis, J. Macintyre, and L. Iliadis. Cham: Springer Interna-
tional Publishing, 2021, pp. 169–183. ISBN: 978-3-030-79150-6. DOI: 10.1007/978-
3-030-79150-6_14

Paper IV
V. M. Devagiri, V. Boeva, S. Abghari, F. Basiri, and N. Lavesson. “Multi-View Data
Analysis Techniques for Monitoring Smart Building Systems”. In: Sensors 21.20

iii

(2021). ISSN: 1424-8220. DOI: 10.3390/s21206775

Paper V
C. Åleskog, V. M. Devagiri, and V. Boeva. “A Graph-Based Multi-view Clustering
Approach for Continuous Pattern Mining”. In: Recent Advancements in Multi-View
Data Analytics. Ed. by W. Pedrycz and SM. Chen. Cham: Springer International
Publishing, 2022, pp. 201–237. ISBN: 978-3-030-95239-6. DOI: 10.1007/978-3-
030-95239-6_8

Paper VI
V. M. Devagiri, V. Boeva, and S. Abghari. “Domain Adaptation Through Cluster In-
tegration and Correlation”. In: 2022 IEEE International Conference on Data Mining
Workshops (ICDMW). 2022, pp. 1–8. DOI: 10.1109/ICDMW58026.2022.00025

Paper VII
V. M. Devagiri, V. Boeva, and S. Abghari. ”ADomainAdaptation Technique through
Cluster Boundary Integration”. Submitted for journal publication (under review).

Paper VIII
V. M. Devagiri, P. Dagnely, V. Boeva, and E. Tsiporkova. ”Putting Sense into Incom-
plete Heterogeneous Data with Hypergraph Clustering Analysis”. In: Symposium on
Intelligent Data Analysis (IDA 2024), Stockholm, Sweden, April 2024 (In press).

Other research publications related to but not included in the thesis are:

Paper IX
M. Angelova, V. M. Devagiri, V. Boeva, P. Linde and N. Lavesson. ”An Exper-
tise Recommender System based on Data from Institutional Repository (DiVA)”.
Leslie Chan and Pierre Mounier (Eds.): Connecting the Knowledge Commons –
from projects to sustainable infrastructure. OpenEdition Press, pp.135-149, 2019.
DOI: 10.4000/books.oep.9078

iv

Paper X
V. Boeva, M. Angelova, V. M. Devagiri, E. Tsiporkova, ”A Split-Merge Framework
for Evolutionary Clustering”, 31th Swedish AI SocietyWorkshop SAIS 2019, Umeå,
Sweden, June 2019.

Paper XI
V. Boeva, E. Casalicchio, S. Abghari, A.A. Al-Saedi, V. M. Devagiri, A. Petef, P.
Exner, A. Isberg. and M. Jasarevic. 2022. ”Distributed and Adaptive Edge-based
AI Models for Sensor Networks (DAISeN)”. Position Papers of the 17th Conference
on Computer Science and Intelligence Systems, Annals of Computer Science and
Information Systems 31 (2022): 71-78. DOI: 10.15439/2022F267

Funding
The research work done as a part of this thesis is partially funded by the following:

• ”Scalable resource efficient systems for big data analytics”, project funded by
the Swedish Knowledge Foundation (grant: 20140032).

• ”Distributed and Adaptive Edge-based AI Models for Sensor Networks”, Sony
Research Award Program 2020 Project.

• ”Human-centered Intelligent Realities (HINTS)”, project funded by the Swedish
Knowledge Foundation (grant: 20220068).

v

Author's contribution to the papers
The author is the main driver and the first author for all the papers except for pa-
pers I and V. For the studies where she was the main driver and first author, she
was involved in all the phases of the research, that is, idea generation, designing and
conducting experimentation, analysis of results, writing the original draft, review-
ing and editing the manuscript. For Paper I, she was mainly involved in designing
and conducting experiments, analyzing results, reviewing and editing the manuscript.
For Paper V, the author was involved in the idea generation, experimental design,
analyzing results, reviewing and editing the manuscript. The author was also the
co-supervisor for the master thesis project at the foundation of this study.

vi

Abbreviations

AMI Adjusted Mutual Information.
ARI Adjusted Rand Index.
ED Euclidean Distance.
FCA Formal Concept Analysis.
HAR Human Activity Recognition.
IoT Internet of Things.
MI Multi Instance.
ML Machine Learning.
MST Minimum Spanning Tree.
RI Rand Index.
SI Silhouette Index.
SNN Shared Nearest Neighbors.
SNNS Shared Nearest Neighbor Similarity.
TEDA Typicality and Eccentricity Data Analysis.

vii

Table of Contents

Acknowledgements i
List of Papers iii
Abbreviations vii
Chapter 1 Introduction 1

1.1 Research Problem . 2
1.2 Contributions and Papers Included 4
1.3 Thesis Structure . 8

Chapter 2 Background 9
2.1 Domain Adaptation . 9
2.2 Evolving (Stream) Clustering 9
2.3 Formal Concept Analysis 10
2.4 Graph-Based Clustering . 11
2.5 Multi-Instance Clustering 12
2.6 Multi-View (Stream) Clustering 12

Chapter 3 Related Work 13
3.1 Evolving Clustering . 13
3.2 Multi-Source Data Analysis 14
3.3 Domain Adaptation . 15

Chapter 4 Methodology 17
4.1 Data sets . 17
4.2 Distance measures . 17
4.3 Evaluation measures . 19

4.3.1 Internal Measures . 19
4.3.2 External measures . 20
4.3.3 Information Theory 21

4.4 Research Methodology . 22
4.4.1 Challenges . 24

4.5 Validity Threats . 25
4.5.1 Internal Validity Threat 25
4.5.2 External Validity Threat 25
4.5.3 Construct Validity Threat 25
4.5.4 Conclusion Validity Threat 26

Chapter 5 Results and Analysis 27
5.1 Evolving Clustering . 27
5.2 Multi-Source Data Analysis 29
5.3 Domain Adaptation . 33
5.4 Summary . 35

Chapter 6 Conclusions and Future Work 37
Chapter 7 Experiences and Learning Outcomes 39
Bibliography 41
Paper I Bipartite Split-Merge Evolutionary Clustering 51

Veselka Boeva, Milena Angelova, Vishnu Manasa Devagiri, Elena Tsi-
porkova
In: Agents and Artificial Intelligence, Ed. by J. van den Herik, A. P.
Rocha, and L. Steels. Cham: Springer International Publishing, 2019,
pp. 204–223, DOI: 10.1007/978-3-030-37494-5_11

1 Introduction . 51
2 Related Work . 54
3 Methods and the Proposed Solution 56

3.1 Problem Description 56
3.2 Pivot Bi-Clustering Algorithm 56
3.3 Dynamic Split-and-Merge Clustering Algorithm 56
3.4 Bipartite Split-Merge Evolutionary Clustering Algorithm 57

4 Experimental Setup . 61
4.1 Data . 62
4.2 Metrics . 63
4.3 Experiments . 64
4.4 Implementation and Availability 65

5 Results and Discussion . 65
6 Conclusion and Future Work 69
References . 70

Paper II Split-Merge Evolutionary Clustering for Multi-View Stream-
ing Data 75

Vishnu Manasa Devagiri, Veselka Boeva, Elena Tsiporkova
In: 24th International Conference on Knowledge-Based and Intelli-

gent Information & Engineering Systems KES 2020, Procedia Computer
Science 176, 2020, pp. 460–469, DOI: 10.1016/j.procs.2020.08.048

1 Introduction . 75
2 Related Work . 77
3 Methods and Background 78

3.1 Split-Merge Clustering 79
3.2 Formal Concept Analysis 79

4 Proposed Multi-View Split-Merge Clustering 80

5 Initial Evaluation and Results 83
5.1 Data and Experimental Setup 83
5.2 Results and Discussion 85

6 Conclusions and Future work 88
References . 88

Paper III AMulti-View Clustering Approach for Analysis of Streaming
Data 91

Vishnu Manasa Devagiri, Veselka Boeva, Shahrooz Abghari
In: Artificial Intelligence Applications and Innovations, Ed. by I. Ma-

glogiannis, J. Macintyre; L. Iliadis. Cham: Springer International Pub-
lishing, 2021, pp.169–183, DOI: 10.1007/978- 3-030-79150-6_14

1 Introduction . 92
2 Related Work . 93
3 Background . 94

3.1 Multi-Instance Clustering and Hausdorff Distance . . . 94
3.2 Formal Concept Analysis 94
3.3 Closed Patterns . 95

4 MV Multi-Instance Clustering using Closed Patterns 95
5 Evaluation . 98

5.1 Data Sets and Experimental Setup 98
5.2 Results and Discussion 100

6 Conclusion and Future Work 103
References . 104

Paper IV Multi-View Data Analysis Techniques for Monitoring Smart
Building Systems 107

Vishnu Manasa Devagiri, Veselka Boeva, Shahrooz Abghari, Farhad Basiri,
Niklas Lavesson
In: Sensors 21, 2021, DOI: 10.3390/s21206775

1 Introduction . 108
2 Background . 109

2.1 Multi-View Clustering 109
2.2 Stream Clustering Algorithms 110
2.3 Multi-Instance Learning 110
2.4 Distance Measures 111
2.5 Formal Concept Analysis 111
2.6 Closed Patterns . 112

3 Related Work . 112
4 Materials and Methods . 114

4.1 Data . 114
4.2 Multi-View Data Analysis Approach 114
4.3 Data Visualization and Analysis 120

5 Experimentation and Analysis 122

5.1 Data Preparation . 122
5.2 Experimental Setup and Results 124

6 Applicability and Limitations 140
7 Conclusion and Future Work 141
References . 142

Paper V A Graph-based Multi-view Clustering Approach for Contin-
uous Pattern Mining 147

Christoffer Åleskog, Vishnu Manasa Devagiri, Veselka Boeva
In: Recent Advancements in Multi-View Data Analytics, Ed. by W.

Pedrycz and SM. Chen. Cham: Springer International Publishing, 2022,
pp. 201–237, DOI: 10.1007/978-3- 030-95239-6_8

1 Introduction . 148
2 Related Work . 149

2.1 Multi-view Clustering Algorithms 149
2.2 Stream Clustering Algorithms 150
2.3 Multi-view Stream Clustering Algorithms 151

3 Background . 152
3.1 Minimum Spanning Tree Clustering 152
3.2 Non-negative Matrix Factorization 153
3.3 Cluster Validation Measures 154

4 MST-MVS Clustering Algorithm 157
4.1 Multi-view data integration 159
4.2 Extraction of multi-view patterns 160
4.3 Transfer of knowledge through artificial nodes 161
4.4 CNMF-based labelling algorithm 162
4.5 Pattern-based labelling algorithm 163
4.6 Computational Complexity 164

5 Data and Experimental Settings 166
5.1 Data . 166
5.2 Data Preparation . 168
5.3 Experiments and Validation 168
5.4 Implementation and Availability 170

6 Results and Discussion . 171
6.1 Algorithm configuration 171
6.2 Tuning of algorithm parameters 172
6.3 Evaluation of algorithm performance 173

7 Conclusion and Future Work 180
References . 181

Paper VI Domain Adaptation Through Cluster Integration and Corre-
lation 187

Vishnu Manasa Devagiri, Veselka Boeva, Shahrooz Abghari
In: 2022 IEEE International Conference on Data Mining Workshops

(ICDMW). 2022, pp. 1–8, DOI: 10.1109/ICDMW58026.2022.00025

1 Introduction . 187
2 Related Work . 189
3 Problem Statement . 190
4 Proposed Domain Integration Clustering Algorithm 191

4.1 Range-based correlation measure 191
4.2 The proposed algorithm 191

5 Experimentation . 194
5.1 Public data . 195
5.2 Real-world use case 196

6 Results and Discussion . 197
6.1 Public data . 197
6.2 Real-world use case 199

7 Conclusions and Future Work 201
References . 202

Paper VII A Domain Adaptation Technique through Cluster Boundary
Integration 205
1 Introduction . 206
2 Related Work . 208
3 Proposed Algorithm . 209

3.1 Model Generalization and Cluster Representation . . . 211
3.2 Range-based Distance Measure 211
3.3 DIBCA++ . 213
3.4 Learning Algorithm 215
3.5 Computational Complexity 216
3.6 Algorithm Explainability 217
3.7 Algorithm Applicability 218

4 Data Sets . 220
5 Evaluation Measures . 220

5.1 Adjusted Rand Index 220
5.2 Adjusted Mutual Information 221

6 Experiments . 221
6.1 Data Pre-processing 221
6.2 Experiments on Smart Logistics Use Case 222
6.3 Experiments on HAR Use Case 224
6.4 Experiments with DIBCA 226

7 Result Analysis and Discussion 228
7.1 Smart Logistics . 228
7.2 Human Activity Recognition 229
7.3 Comparison with DIBCA 231
7.4 Explainability . 231

8 Conclusion and Future Work 233
References . 235

Paper VIIIPutting Sense into Incomplete Heterogeneous Data with Hy-
pergraph Clustering Analysis 241

1 Introduction . 241
2 Related Work . 242
3 Hypergraph-based Clustering Analysis Method 244

3.1 Step I: Hypergraph Construction 244
3.2 Step II: Transformation to Simple Graph 245
3.3 Step III: Cluster Integration and Analysis 246
3.4 Step IV: Deriving KPIs to analyze performance 247

4 Evaluation in Industrial Use-case 247
4.1 Step I: Hypergraph Construction 248
4.2 Step II: Transformation to Simple Graph 249
4.3 Step III: Cluster Integration and Analysis 249
4.4 Step IV: Deriving KPIs to analyze performance 251

5 Conclusion . 252
References . 252

1 Introduction

Thanks to the growth and technological advancements in Internet of Things (IoT),
sensor networks, smart monitoring applications, etc., a lot of data is available to-
day. These applications generate data continuously, and there are various challenges
in storing, processing, and obtaining valuable information from such huge amounts
of data [1]. Machine Learning (ML) and data mining fields provide methods and
techniques that can be applied to analyze data for extracting useful knowledge and
insights that can be used to understand or monitor the studied system. There are vari-
ous ML and data mining algorithms that can be broadly categorized into four groups,
namely supervised, semi-supervised, unsupervised, and reinforcement learning [2].
Different types of ML algorithms are used based on the learning capabilities, nature
of data, and target outcome [3]. Both supervised and semi-supervised learning algo-
rithms require a large amount of labeled data for training, which is either generally
unavailable when dealing with real-world data and/or is a costly process to label such
large volumes of data. Unsupervised learning techniques have a greater demand and
use in real-world scenarios, as they do not require labeled data. In addition to this,
they are capable of mining hidden patterns from data [2]. Clustering is one of the
most popular unsupervised learning techniques [4]. Clustering techniques are used
to group data such that data points placed in a cluster are similar to each other and
different from the data points of other clusters [5]. This thesis focuses on clustering
techniques that handle evolving and/or multi-source/view data.

Data is generated continuously in many application scenarios, and the ML mod-
els built become obsolete over time or space due to changes in data characteristics
causing the occurrence of phenomenons like concept drift [6] or domain shift [7].
These are important aspects to be considered while developing algorithms suitable
for evolving data. When the data characteristics of newly arriving data are no longer
the same, it becomes difficult to accommodate them into the existing model as it
becomes outdated [8]. This provides the need for evolving algorithms, which can
be updated regularly to be suitable also for the new data with potentially different
characteristics. When new information is generated, many computational resources
are required to rebuild the model. Hence, evolving or adaptive clustering algorithms
are required to discover and accommodate data with new characteristics. In addition
to the streaming nature, concept drift, and domain shift, there is also a need to de-
velop clustering algorithms that can handle data generated from multiple sources, as

1

most applications, like smart monitoring systems, collect information from various
devices. Such data generated from multiple sources (also known as multi-view data)
observing the same event can present interesting details that are otherwise invisible
when studying data from a single source [9]. Data heterogeneity is an additional prob-
lem that needs to be addressed when working with multi-view data as it is collected
from different sources, e.g., multiple sensors or devices [10].

Traditional clustering algorithms are unsuitable for addressing the above-stated
challenges of multi-source [11], multi-domain [7], and streaming [6] data. In this
thesis, novel clustering approaches are developed to address different aspects of the
above-discussed challenges. The developed algorithms can monitor, analyze, and in-
terpret the data obtained from different smart applications used for monitoring, pro-
viding personalized recommendations, etc.

1.1 Research Problem
This thesis combines several research works presenting robust clustering techniques
suitable for analyzing and extracting knowledge from evolving and heterogeneous
data from single and multiple sources. In this framework, three evolving clustering
algorithms, four multi-view clustering analysis algorithms/approaches, and two do-
main adaptation algorithms are proposed. These are part of the eight different studies
that have been conducted as a part of this PhD thesis.

The main aim of the thesis is to develop and study clustering techniques to
mine and analyze streaming data by handling its evolving, heterogeneous, and multi-
source nature. The research objectives below are defined to achieve this aim.

Obj 1. To propose and explore data analysis techniques that can adapt the clustering
model based on the changes in data characteristics.

Obj 2. To analyze multi-source streaming data by developing multi-view cluster inte-
gration techniques capable of capturing knowledge across different views.

Obj 3. To study and propose clustering-based analysis methods that can handle data
with missing values generated from multiple heterogeneous sources.

Based on the aim and objectives set to be accomplished, the following research
questions are stated and addressed in this thesis.

RQ1 How can a clustering solution be updated to accommodate and catch evolving
characteristics of continuously arriving data?
Motivation: Many current-day applications continuously generate a lot of datawhose
characteristics tend to change over time. It becomes difficult to accommodate and fit
new data into the current model in such contexts. In such situations, one alternative is

2

to rebuild the clustering model, which is not optimal as (i) it would consume a lot of
computational resources [12], and (ii) higher importance should be given to the latest
trends while retaining the existing knowledge, which would not be entirely possible
by rebuilding themodel from scratch. Hence, there is a need for a clustering approach
that can integrate new data into the existing model based on its characteristics.
Papers: This research question is dealt with in papers I, II, III, IV, and V. Paper I
proposes a novel Split-Merge Evolutionary Clustering technique, also used in Paper
II. The algorithm can split or merge existing clusters based on the clustering model of
newly arriving data, thus obtaining one final updated clustering model. In Paper III,
Bi-Correlation MI-Clustering is proposed based on Multi Instance (MI) learning and
bipartite correlation clustering. This algorithm is further evaluated in a real-world
use case of smart building systems in Paper IV. Another algorithmMST-MVS is pro-
posed in Paper V, which can be used for mining and analyzing multi-view streaming
data.

RQ2 How can clustering models generated in a multi-view streaming context be
integrated into a robust global model capturing knowledge from different views?
Motivation: Multi-source data is common in many application scenarios, and in-
formation from these sources could complement each other. When viewed together,
this data can give or produce information that cannot be obtained when only each
of these views is considered [9]. Therefore, successfully integrating this knowledge
from multiple views into a single model might be helpful. Even though there have
been lots of works in multi-view clustering and stream clustering, not much has been
done in the area of multi-view stream clustering [13, 14].
Papers: This research question is addressed in papers II, III, IV, and V, where the
first three papers use Formal Concept Analysis (FCA) to integrate knowledge from
different views. In addition to FCA, closed patterns have also been used in papers III
and IV to extract frequent patterns and reduce the complexity of the global model. In
Paper V, the local clustering models of different views are initially evaluated to avoid
negative impact and those of the desired quality (Silhouette Index (SI) greater than
the set threshold) are used to build the global model. The selected representatives of
the cluster and their attributes from other views are extracted to build an integrated
matrix, which is clustered using a Minimum Spanning Tree (MST) based clustering
algorithm.

RQ3 How can we develop a resource-efficient domain adaptation algorithm for a
robust clustering model alignment to new domains?
Motivation: There has been a lot of work in the field of domain adaptation, but the
majority of the state-of-the-art works use deep learning or are developed for com-
puter vision-based applications. There are limited works addressing this for time-
series data using unsupervised learning techniques. Edge devices usually generate
data in such applications with strict resource constraints. Novel domain adaptation

3

techniques that are resource-efficient and can support robust model adaptation to new
contexts are needed.
Papers: Papers VI and VII address this research question by proposing novel unsu-
pervised domain adaptation algorithms, namely DIBCA and DIBCA++, which are
based on cluster integration. The algorithms produce an integrated clustering model
that can be used across the domains and adapted domain models, one for each do-
main. Both the algorithms are developed to be resource efficient as all the operations
are performed using only the clusters’ representatives.

RQ4 What kind of clustering analyses can be performed on heterogeneous multi-
source data with missing values to produce useful homogeneous clusters?
Motivation: In many application scenarios related to monitoring the performance
of different types of assets, data is usually generated from multiple sources and is
likely to be heterogeneous. Analyzing and deriving meaningful insights from such
data is challenging [15]. As stated before, certain interesting aspects might be as-
sociated with a subset of features. In such cases, using multi-view or multi-layered
techniques to analyze a few features at a time might be helpful [11, 16, 17]. Another
common concern with data frommultiple sources is having many missing values due
to lack of standardization, equipment malfunctioning, registration errors, communi-
cation issues, etc. Common practices to deal with missing values include imputation
techniques or removing the features with a high degree of missing values, but such
practices negatively affect the data quality [18]. This raises the need for studying
and proposing clustering techniques suitable to analyze multi-source heterogeneous
data with missing values. The obtained homogeneous groups are expected to have
similar behavior and are useful for tasks like performance monitoring.
Papers: Paper VIII mainly focuses on this research question. A multi-layered clus-
tering approach followed by hypergraph clustering based on k-medoids and nearest-
neighbor similarity is proposed to achieve this. The other multi-view clustering algo-
rithms (papers II, III, IV, and V) proposed in this thesis are also capable of handling
heterogeneous data. However, MST-MVS is not capable of handling missing values,
and it can be noted that even if the others (papers II, III, and IV) are capable of work-
ing in scenarios with missing values, they are not evaluated concerning this aspect in
those studies.

A visualization of the connections between the aim, objectives, and research
questions is presented in Figure 1.1.

1.2 Contributions and Papers Included
The main contribution of this thesis is the development and empirical analysis of
novel clustering techniques suitable for the mining and analysis of evolving and het-
erogeneous (multi-source/view) data. This thesis includes eight papers, five of which,

4

Figure 1.1: Figure visualizing the connections between the thesis's aim, objectives, and research questions.

namely Papers II, III, IV, V, and VIII, deal with multi-source data challenges, and all
the papers except Paper VIII propose or use algorithms to address challenges related
to the evolving nature (Papers I, II, III, IV, and V) and domain shift (when multi-
ple devices or locations are considered; Papers VI and VII) of the streaming data.
Figure 1.2 presents the research questions along with the information about which
papers address them. This is followed by the text briefly summarizing the papers
included in this thesis, along with their contributions.

Paper I. A novel clustering approach entitled Split-Merge Evolutionary Cluster-
ing is proposed. The approach integrates the clustering models of histor-
ical and newly arriving data using a bipartite graph based on the correla-
tions between the two clustering models. An updated clustering solution
is obtained by splitting or merging the clusters based on the edge connec-
tions of the bipartite graph. The algorithm is evaluated on four different
data sets and compared with two other state-of-the-art algorithms.

Paper II. A multi-view clustering approach, MV Split-Merge Clustering based on
the algorithm in Paper I (used to update the clustering solutions in each
view), is proposed. It is developed to analyze multi-view streaming data
and build a consensus clustering solution (global model) based on the
information obtained from different views where FCA is used for the in-

5

Figure 1.2: Figure visualizing the research questions and papers where they are addressed.

tegration. An initial evaluation is done, and the algorithm is compared to
its batch version, where it has produced comparable results on an anthro-
pometric data set, showcasing the algorithm’s potential as a multi-view
clustering solution.

Paper III. Anovelmulti-view clustering algorithm, entitledMVMulti-InstanceClus-
tering is proposed. The new algorithm is developed to provide improved
performance and interpretability of the results when compared to MV
Split-Merge Clustering. Unlike Paper II, this paper uses a novel multi-
instance learning algorithm proposed, Bi-Correlation MI-Clustering to
update clustering solutions in each view. Closed patterns are also used
to mine frequent concepts while building the global model, reducing its
complexity. The results show that the proposed algorithm has performed
better than theMV Split-Merge clustering.

Paper IV. This work studies the use of MV Multi-Instance Clustering algorithm
for multi-view analysis of data in the smart building domain, using data
provided by an industrial partner. The scenarios in which the algorithm
could be used to analyze the data are presented and examined, focusing
on contextual and integrated analysis of the systems. It also presents
visualization techniques to showcase extracted knowledge that could be
used to aid domain experts in detecting trends such as deviating behaviors.
The study showed the algorithm’s potential in monitoring, analyzing, and
identifying deviating behaviors of sub-systems in a smart building sys-
tem.

Paper V. A novel multi-view clustering algorithm entitled MST-MVS is proposed.

6

It is based on MST clustering and can be used to analyze and monitor
streaming data. It is a continuous data mining approach where the inte-
grated knowledge from the global model obtained at each data chunk is
transferred to the next one through artificial nodes of the MST algorithm.
This knowledge transfer, which proved to be beneficial, helps build the
clustering solution in the next chunk by considering how the previous
data has been grouped. A post-labeling technique is also proposed to la-
bel the chunk’s data points based on the built global model. MST-MVS is
evaluated on both real-world and synthetic data sets.

Paper VI. This work proposes a resource-efficient novel domain adaptation tech-
nique based on cluster correlation and integration, entitled DIBCA. It in-
tegrates knowledge from different domains, i.e., the source and target
domain, by identifying their correlations. Correlations are obtained by
labeling source data with the target model and target data with the source
model. DIBCA produces an integrated model that can be used across the
domains and a personalized adapted model for each domain. Its capa-
bility in automatic data labeling is showcased using the Human Activity
Recognition (HAR) data set, and in addition, a real-world industrial use
case of smart logistics is used to study its potential in the domain adapta-
tion task.

Paper VII. This study proposesDIBCA++, a novel domain adaptation technique and
an improved version of DIBCA. DIBCA++ is developed to be robust to
outliers compared to its predecessor. It requires a modest amount of stor-
age and computational resources as it requires only the clusters’ mean,
standard deviation, and size. The algorithm’s explainability aspects and
applicability potential are also studied and presented. The algorithm is
evaluated on a HAR data set and a smart logistics use case from an indus-
trial partner. The experimental results showcase the better performance
of DIBCA++ over DIBCA. They also present the ability of DIBCA++ to
transfer knowledge between domains.

Paper VIII. In this study, a novel unsupervised data analysis method is proposed to
group heterogeneous data with missing values into homogeneous groups
that can be used for performance monitoring. Each group is expected to
have comparable behavior, thus aiding domain experts in monitoring the
performance of assets in the group. The proposed approach is developed
such that it can handle missing values. The approach is based on concepts
of multi-layer clustering, shared nearest-neighbor similarity, and hyper-
graph clustering. The proposed approach is evaluated on a real-world in-
dustrial data set of multi-source heterogeneous assets (compressors) with
a substantial amount of missing values.

7

1.3 Thesis Structure
The rest of the thesis is structured as follows. Chapter 2 presents the background re-
quired for an easy understanding of the concepts used in different studies. Chapter 3
presents the summary of related works of the main contributing areas of the thesis.
This is followed by Chapter 4, which offers an overview of the methodology used in
this thesis. It covers data sets used, distance measures, evaluation measures, research
methodology, and validity threats. The results of the thesis and their analysis are pre-
sented in Chapter 5, and the conclusions and future work are presented in Chapter 6.
In Chapter 7, experiences and the learning outcomes identified during the PhD jour-
ney are presented. The next eight chapters consist of the research papers included in
this thesis.

8

2 Background

This chapter briefly introduces the main research areas of the thesis, namely domain
adaptation (Section 2.1), evolving (stream) clustering (Section 2.2), and multi-view
stream clustering (Section 2.6) along with some concepts used in different papers
included in the thesis. FCA, Section 2.3, is used as a cluster integration technique in
multi-view clustering while building the global model. Section 2.4 presents different
graph-based clustering techniques used in the thesis. The bipartite graph clustering
and cut-clustering algorithm are used in identifying cluster structures. In one of the
papers, hypergraph is used as an intermediate step to obtain a lower data granularity
and help avoid the use of raw data in the later steps. MI clustering (Section 2.5) is
also used to determine the cluster structures but is better at handling the ambiguity in
real-world streaming data scenarios. Different subsections of this chapter are ordered
alphabetically.

2.1 Domain Adaptation
ML models trained in one domain (location, device, etc.) do not always perform
well when used in another domain due to changes in data characteristics. In such
situations, the existing model must be adapted to the newer data characteristics. The
domain where the model is initially trained is referred to as the source, and the one
to which this model is adapted to is referred to as the target [19]. Domain adapta-
tion is a sub-branch of transfer learning, where the source and target address similar
problems but have different data characteristics [20]. That is, the quintessential ML
assumption that the train and test data have the same data characteristics does not hold
in this case [7, 21]. Papers VI and VII propose clustering-based domain adaptation
algorithms for knowledge transfer between different domains.

2.2 Evolving (Stream) Clustering
Evolving clustering algorithms are designed to adapt and continuously accommodate
data with evolving characteristics and are being used for data streams [22, 23]. Clus-
tering is an unsupervised learning technique where labeled data is not required to

9

build a model. Similar to the traditional clustering algorithms, the main aim of these
algorithms is to group the data, where data points belonging to a group are similar
to each other and are different from the data points of other groups. In contrast to
the traditional algorithms, in evolving clustering algorithms, all the data is not avail-
able to be handled in one batch; instead, the clustering structure evolves as new data
arrives and is accommodated. According to Bouchachia [24], different phases of an
evolving clustering algorithm can be categorized into matching, accommodating new
data, and model refinement.

Stream clustering techniques are used to cluster evolving streaming data gener-
ated continuously without having the need to revisit or store the data [12]. Due to the
large amounts of data produced, streaming data is generally not labeled. Hence, clus-
tering is one of the most suitable techniques to analyze or mine useful information
from such data [6]. While designing stream clustering algorithms, it is essential that
time and memory constraints are considered for handling large amounts of data. Con-
cept drift is a common problem that needs to be addressed by a clustering algorithm
designed for streaming data [6].

Concept drift is a phenomenonwhere the data characteristics tend to change over
time [6]. As a result, the ML model that cannot handle concept drift is considered
outdated and shows degraded performance [8]. Such changes in data characteristics
are common in many fields where data is generated over time. For example, if we
consider consumer profiles of a clothing store, what a person buys from that store
might change over a period of time due to some external factors like climate, special
occasions, etc. Such changes in data characteristics are referred to as concept drifts.
There are different types of concept drift scenarios introduced in the literature, such as
blip, gradual, incremental, noise, recurring, or sudden [25]. In their study, Agrahari
et al. [26] review the existing works on concept drift detection and identify their
advantages and limitations.

The research literature does not always present a common opinion about the
relationship between time-series and streaming data. Authors of [27] conclude that
data streams are a special form of time series by discussing the relationship between
both. Time-series data is obtained and collected chronologically over time; however,
the amount of data received when considering streaming data is vast. In another
work [28], in contrast to the popular opinion, the authors show that the presence
of concept drift implies temporal dependence and claim about the effectiveness of
stochastic gradient descent methods for learning in data streams.

2.3 Formal Concept Analysis
Formal Concept Analysis (FCA) [29] is a technique used to find relations between
objects and their properties, also known as attributes in ML terminology. It has been
used in areas like data mining and ML to extract useful information. Formal context

10

and concept lattice are two important parts of FCA. A formal context is a table where
the rows and columns consist of objects and attributes, respectively. If an object pos-
sesses an attribute, the cell corresponding to this object and attribute is marked with
a cross. Concept lattice, a hierarchical structure, is derived from the formal context
and contains concepts that can be represented using (X, Y), where X and Y are the
subsets of objects and attributes, respectively. A concept represents a group of data
points all sharing the properties (attributes) present in the concept and vice-versa. In
the concept hierarchy, there exists a super and sub-concept for each concept. Previ-
ously, many works such as [30–32] used FCA as a part of their clustering approaches
to analyze or aggregate the clustering solutions. Papers II, III, and IV included in this
thesis use FCA to integrate and build a global model from clustering solutions of dif-
ferent views.

2.4 Graph-Based Clustering
This section briefly reviews the graph-based algorithms used in our work. Bipartite
graphs (Papers I, II, III, IV,), Cut clustering based onMST (Paper V), and hypergraph
(Paper VIII), which are used as a part of our proposed algorithms or methods.

A bipartite graph is a graph with two disjoint sets of vertices U , V such that all
the edges of the graph connect vertices from setU to set V . It can be noted that no two
vertices from either set U or V are adjacent [33]. As stated in [34], there are many
ways to cluster data from a bipartite graph. The authors define Bipartite correlation
clustering as follows. They state that a bi-clique of the bipartite graph represents
a cluster, and all the bi-cliques together represent the clustering solution. Ailon et
al. [34] propose PivotBiCluster, a bipartite correlation clustering algorithm that does
not need to have prior knowledge about the number of clusters. The algorithm uses
merge functionality to integrate clusters from either side of the bipartite graph to
obtain the final clustering solution.

Cut-clustering algorithm [35], which uses minimum cuts in a graph to cluster
data, is also used in this thesis. The algorithm considers the data instances as nodes of
the graph. An undirected graph with the edge weight representing the similarity be-
tween the nodes is built. This is followed by introducing an artificial node connected
to all the other nodes of the graph with a constant distance α. Then, the graph’s
MST is computed, followed by removing the artificial node. The forest generated
is the final clustering solution. Clustering algorithms proposed in [36, 37] use this
Cut-clustering algorithm.

A hypergraph is a generalized version of a graph in which an edge can join any
number of nodes. The edge of a hypergraph is also referred to as a hyperedge or
a net; the nodes of an edge are referred to as the pins [38]. Hypergraphs are being
used in a wide range of application scenarios like telecommunications, parallel data
structures, computer science, ML, etc., [39]. Gao [40] in their work review exist-

11

ing works using hypergraph learning. They present different ways of hypergraph
generation, learning models and applications where hypergraphs could be used. Dif-
ficulty in identifying appropriate hypergraph generation methods is highlighted and
is identified as a potential area for conducting research.

2.5 Multi-Instance Clustering
Multi-Instance (MI) learning is used in papers III and IV. In MI learning, unlike tra-
ditional learning algorithms, a group of instances (also known as a bag) is considered
as a single data object [41]. MI clustering is an unsupervised learning technique used
to group these bags into clusters. Bags within the same clusters are similar to each
other and are different from the bags in the other clusters. Like traditional clustering
algorithms, MI clustering does not require labeled data and can create groups based
on the built-in data structure. Even though the basic properties of MI clustering are
similar to traditional clustering algorithms, it cannot be entirely treated like them as
a single data instance considered here has many instances that might have different
characteristics [42].

2.6 Multi-View (Stream) Clustering
Multi-view clustering techniques are used to cluster data obtained from multiple
sources. Viewing information from numerous sources can sometimes provide valu-
able information that is not obvious when viewing it from just one source [9]. For
example, a patient profile can be represented by the data collected from different
smart monitoring devices, notes written by doctors, images such as x-rays, etc. A
multi-view clustering technique considers information from across the views and
builds a consensus or aggregated model representing this information [43].

Many challenges need to be addressed while working with data coming from
multiple sources. As the data is obtained from various sources, there is a possibility
that it could be heterogeneous [44]. Incomplete views, that is, the possibility of
missing information from different views, is another common challenge.

Multi-view stream clustering algorithms are expected to address the challenges
of both multi-view and stream clustering algorithms, as the name suggests. That is,
it should be able to analyze and group streaming data generated from more than one
source.

12

3 Related Work

This section presents the related works concerning the three main contributing areas
of this thesis, namely evolving clustering, multi-source data analysis, and domain
adaptation.

3.1 Evolving Clustering
The majority of applications these days generate streaming data, making the tradi-
tional clustering algorithms ineffective for analyzing and mining knowledge from
such data. Data stream mining is an important research area [28]. Authors of [6, 12,
45, 46] review the existing state-of-the-art stream clustering algorithms. In [45], the
authors highlight the challenges in the domain along with possible future directions
and also focus on temporal aspects of data stream clustering. In [6], the common con-
cepts related to stream clustering are introduced. This review analyses the considered
algorithms in terms of computational complexity, clustering technique and accuracy.
Authors of [46] classify stream clustering algorithms into two types one which has
both online and offline learning phases and others which are capable of doing the
job with just the online phase. In [12], the authors review 51 different stream clus-
tering algorithms, which are categorized based on distance threshold, density grids,
and statistical models.

Chakrabarti et al. [47] define evolving clustering algorithms (referred to as evo-
lutionary clustering) as the ones that are able to deliver a clustering solution that
can reflect current characteristics of evolving time series data and, at the same time,
should not change drastically between two-timestamps. The authors of [47] also pro-
pose the evolutionary versions of k-means and agglomerative hierarchical clustering
algorithms.

The authors of papers [48–50] propose novel clustering algorithms capable of
splitting or merging the clusters based on the need to be able to accommodate new
data. Lughofer in [48] proposes a dynamic clustering algorithm entitled Dynamic
split-merge. The algorithm is designed to be used in integration with another incre-
mental clustering algorithm. Incoming data points are initially accommodated into
the existing clustering solution; this is followed by evaluating each cluster to deter-
mine if it needs to be split, merged, or retained. Fa et al. [49] in their work also

13

propose an algorithm with split and merge functionality, which are applied when the
preconditions are satisfied.

In [22], the authors propose an evolving clustering algorithm entitledMicroTEDA-
clus, based on the Typicality and Eccentricity Data Analysis (TEDA) concept. The
authors of [23] expand the existing evolving classifier (TEDAclass), which is also
based on TEDA to clustering and regression and propose novel algorithms entitled
TEDACluster and TEDAPredict, respectively.

Even though there is a lot of work being done in the field of evolving clustering
and stream clustering algorithms, the intersection of this with multi-view clustering
is yet to be completely explored [13, 14]. It can be noted that except in Paper I, the
other evolving algorithms proposed are capable of handling multi-view data.

3.2 Multi-Source Data Analysis
Studies [10, 11] are surveys providing a good overview of the recent works in the
field of multi-view clustering. Some of the novel algorithms proposed in the field
are briefly presented in the following text. Wang et al. [51] in their work propose
a novel algorithm entitled MVC-LFA. In the conducted experiments, the proposed
algorithm performed better than the other considered algorithms. A multi-view clus-
tering algorithm based on non-negative matrix factorization is proposed by Shao et
al. in [14]. Zhu et al. [52] have proposed another algorithm in the field that is based
on feature selection. There are various challenges that need to be considered when
dealing with multi-source data, such as heterogeneity [44], missing data, or incom-
plete views. Authors of [14, 53–55] address incomplete views with the challenge of
missing data in their works. Algorithms proposed in both [53, 54] are based on late
fusion, where data in each view are initially clustered, and the results are integrated
to obtain the final clustering solution. In [55], the authors propose a novel clustering
method entitled SURE, which uses random sampling for the imputation of missing
values, but potential inconsistencies that could occur are addressed.

Compared to the fields of multi-view and stream clustering, multi-view stream
clustering is still in its infancy [13, 14]. Authors of [13, 14] have proposed novel al-
gorithms in the field of Multi-View Stream Clustering. MVStream proposed in [13]
is based on support vectors and is robust to concept drift. In [14], online multi-
view clustering based on non-negative matrix factorization is proposed. In another
study [56], the authors propose a multi-view representation learning method for clus-
tering multi-view data streams. This is done by building a sparse affinity matrix
based on the different views.

Papers II, III, and V of this thesis propose novel multi-view stream clustering
algorithms. In Paper IV, the algorithm proposed in Paper III is further evaluated
in a smart building domain. Paper VIII, unlike other included papers in this thesis,
presents a multi-layered/view data analysis approach that is unsuitable for streaming

14

data but instead is relevant when the data set has a substantial amount of missing
data.

3.3 Domain Adaptation
Studies like [19, 57, 58] present a state-of-the-art overview by summarizing the
works done in the field. Authors of [57] present a survey of the state-of-the-art trans-
fer learning algorithms suitable for the tasks of classification, regression, and cluster-
ing. The authors also discuss the relationship between transfer learning with domain
adaptation, multi-task learning, sample selection bias, and covariate shift. Madadi
et.al [58] present a survey studying the unsupervised domain adaptation techniques
that could be used for classification tasks. In [19], the authors review homogeneous
transfer learning algorithms that deal with the scenario where the source and target
data sets have the same attributes.

In their work, the authors of [59] state the need for empirical results on time-
series data and test the performance of two of the existing domain adaptation algo-
rithms (based on convolutional and recurrent neural networks) on four different time
series data sets. They have identified that the similarity of the source and target data
sets impacts the performance. Li et al. [60], in their work, have proposed a novel
domain consensus clustering algorithm to be able to handle source and target having
different labels. The algorithm deals with this situation by separating the common
and private clusters of the domains. It was evaluated on four different image data
sets. In [61], a semi-supervised adaptive clustering algorithm based on adversarial
clustering is proposed. Pseudo-labeling is used to increase the labeled instances of
the target domain. Various works have been done in the field of domain adaptation,
but the majority of these works are in the fields of computer vision and deep learning.
There have not been many works addressing domain adaptation for the time-series
data sets.

Source data privacy is another concern with many algorithms in the field; au-
thors of [62, 63] propose source-free domain adaptation algorithms and state the im-
portance of these. In addition, Pan et al. [57] state that unsupervised transfer learning
is a less explored area and that there might be an increased research interest in this
area in the future. Authors of [64] also propose an algorithm that does not require
labeled data in both source and target domains and also state the importance of do-
ing so. They propose an approach based on deep clustering, which uses data from
different source domains and builds a domain-agnostic clustering model, refined in
line with the target data when available.

Unlike the majority of the domain adaptation algorithms from the state-of-the-
art, which are in the fields of deep learning and computer vision, the algorithms
proposed in papers VI and VII are designed to be used in an unsupervised setup
using clustering algorithms for time-series data. Another important aspect that these

15

algorithms handle well is data privacy. Both source and target data are protected as
only parameters of the clustering models generated are used for knowledge transfer.

16

4 Methodology

This thesis is related to the areas of data mining, knowledge discovery, andML; more
specifically, it explores unsupervised learning techniques in adaptive and evolving
clustering, multi-source data analysis, and domain adaptation. It aims to develop
and study clustering techniques to mine and analyze streaming data by handling its
evolving, heterogeneous, and multi-source nature. This chapter begins by presenting
the data sets, distance measures, and evaluation measures used in different papers
this thesis includes. Then, the research methodology and the challenges identified
are discussed. Finally, the validity threats of the studies conducted are presented.

4.1 Data sets
The data sets used for evaluating the algorithms proposed in this thesis are presented
in this section. We have used a mix of synthetic data, publicly available real-world
data, and also data from real-world use cases provided by industrial partners. Ten dif-
ferent types of data sets are used across papers of this thesis namely, cover type [65],
yeast [66], wine quality [67], anthropometric data [68], Dim32 [69], PAMAP2 [70],
DaLiAc [71], real-world industrial assets data, real-time sensor data from smart build-
ing and smart logistics domains. Three of these data sets, cover type, yeast, and wine
quality, are obtained from the UCI ML repository. The anthropometric data set is a
publicly available data set of undergraduate students. It classifies whether a person
has high blood pressure or not based on their anthropometric measures. Dim32 is a
publicly available synthetic data set. PAMAP2 and DaLiAc are HAR data sets that
are used to evaluate the domain adaptation algorithms. In addition to the publicly
available data sets, three data sets, assets data, real-time sensor data from the smart
buildings (heating and tap water sub-systems), and smart logistics domains, are ob-
tained from our industrial partners. Table 4.1 presents the details about the data sets.

4.2 Distance measures
Most clustering techniques are distance-based. Different distance measures are usu-
ally used to measure dissimilarity between data points in order to conduct clustering

17

Table 4.1: Data sets used in the thesis.

Data set Attributes Classes Papers

Cover-type 14 7 I, V
Yeast 8 10 I
Wine quality 12 7 I
anthropometric data 9 6 I, II, III
Sensor data - Smart buildings Domain (heating) 8 unlabeled III, IV, V
Sensor data - Smart buildings Domain (tap water) 11 unlabeled IV
Dim32 32 16 V
Sensor data - Smart Logistics 8 unlabeled VI, VII
PAMAP2 (HAR) 31 17 VI
DaLiAc (HAR) 24 13 VII
Assets data 24 unlabelled VIII

analysis. The quality of the clustering results is dependent on choosing an appropri-
ate distance measure. It should be suitable to the data set and the used clustering
algorithm [72].

EuclideanDistance (ED) is one of themost common distancemeasures used [72];
the distance between two data points A and B in a n-dimensional space using the ED
can be calculated using Eq. 4.1:

ED(A, B) =

√√√√ n∑
i=1

(ai − bi)2. (4.1)

MI Clustering has its own characteristics, and the similarity measures used in
single-instance clustering, such as ED, may not be appropriate. Average Hausdorff
distance is used to determine the distance between the bags of objects in a MI learn-
ing problem [42]. The average Hausdorff distance between two bags of instances A,
B can be computed applying Eq. 4.2, in which d(a, b), is usually obtained using the
ED. Another measure that can be used to measure similarity between two clusters
is introduced in Paper VI. We have proposed a new range-based correlation mea-
sure to determine the closeness between two clusters represented by their minimum
bounding boxes.

HDavg(A, B) =
∑

a∈A minb∈B d(a, b) +
∑

b∈B mina∈A d(a, b)
| A | + | B |

(4.2)

Shared Nearest Neighbor Similarity (SNNS) [73] works on the principle that
data points having a higher number of common neighbors are more likely to be sim-
ilar to each other. The neighbors for each data point are obtained using k nearest
neighbors. SNNS of two data points a, b can be calculated using Eq. 4.3, where Γ(a)
represents the neighborhood of a, dap is the distance between a and its neighbour
p, and Shared Nearest Neighbors (SNN), SNN(a, b) = Γ(a) ∩ Γ(b). Inspired by
this, we have modified and used SNNS to determine the similarity between different
edges (hyperedges) of a hypergraph, where SNN between two edges are the common

18

vertices between the hyperedges. SNNS between two edges when they are present
in each other’s neighborhood is obtained by dividing the intersection of neighbors by
the union of neighbors.

SNNS(a, b) =

|SNN(a,b)|2∑

p∈SNN(a,b)(dap+dbp) , if a, b ∈ SNN(a, b).

0, otherwise
(4.3)

Other distance measures that have been explored in some of our studies are
Hamming distance [74], which determines the similarity between two strings of equal
length, and dynamic time wrapping [75] suitable for time-series data.

4.3 Evaluation measures
Different evaluation measures have been used across the papers in the thesis. Clus-
tering models can be evaluated using either internal or external validation measures
[5]. External validation measures use external information not used to build the clus-
tering model, such as the labels to validate the model. Whereas it is the opposite for
internal validation measures, they use the same information that is used to build the
clustering solutions. Internal measures assess compactness, separation, connected-
ness, and stability aspects of clustering solutions. External validation measures are
further divided into unary and binary [76], and the third category, information the-
ory [77], is also used by some authors. Table 4.2 gives an overview of the types of
clustering measures used in this thesis.

4.3.1 Internal Measures
Silhouette Index (SI): It measures the compactness and separation within and be-
tween different clusters of a clustering solution [78]. Its values range from −1 to 1,
where higher values denote a good clustering solution. SI of a clustering solution C
is defined as follows:

SI(C) = 1
m

m∑
i=1

(bi − ai)
max{ai, bi}

(4.4)

In the above equation, for object i, ai is the average distance between i and other
objects within the cluster, and bi denotes the minimum average distance between
distances of objects.
Davies Bouldin: The Davies Bouldin measure [79] measures the average similarity
of each cluster of the clustering solution to its most similar one, where similarity is
the ratio of intra-cluster (within clusters) distances to inter-cluster (between clusters)

19

distances. The least values represent a better clustering solution, zero being the best
possible value.
Calinsiki Harabasz Index: Calinsiki Harabasz Index [80] or the Variance Ratio
Criterion is the ratio of the sum of inter-cluster dispersion and intra-cluster dispersion.
The formula to calculate the index is presented in Eq. 4.5, where k is the number of
clusters in the clustering solution, n is the total number of data instances in the data
set, BGSS and WGSS stand for between-group (cluster) sum of squared and within-
group sum of squared distance.

CHI = BGSS/(k − 1)
WGSS/(n− 1)

(4.5)

Connectivity: Connectivity [76] uses k-nearest neighbors to determine how well
the data points within a cluster are connected. It is based on the number of neighbors
of k-nearest neighbors within the cluster. It ranges between 0 and infinity, and the
lower the value, the better the clustering solution. The connectivity, c of a clustering
solution C, is obtained using Eq. 4.6, where mij represents the jth nearest neighbor
of data point i. The value of Ximij depends on whether i and mij belong to the
same cluster or not. If they belong to the same cluster, the value is 0, else it is 1/j.

c(C) =
m∑

i=1

nr∑
j=1

Ximij (4.6)

4.3.2 External measures
Adjusted Rand Index (ARI): It is used to measure the similarity between two clus-
tering solutions based on the number of pairs (predicted and ground truth) of samples
that are categorized into similar or different clusters. ARI [81] is an adjusted for-
chance version of the Rand Index (RI) [82]; adjustment is done such that it produces
a score closer to 0 for random results. It ranges between −0.5 and 1.0, where 1.0
is a perfect match and closer to 0.0 for random labeling. ARI can be obtained using
Eq. 4.7, where n is the number of elements; ai and bj are sum of the pair of samples
of i and j, respectively.

ARI =
∑

ij

(nij

2
)
− (
∑

i

(ai
2
)∑

j

(bj

2
)
)/(
(n

2
)
)

1
2

[∑
i

(ai
2
)

+
∑

j

(bj

2
)]
− (
∑

i

(ai
2
)∑

j

(bj

2
)
)/(
(n

2
)
)

(4.7)

F-Measure: The F-measure [83] or F-score is used to evaluate the obtained final
clustering result against the ground truth. It is a harmonic mean of precision (positive
prediction quality) and recall (amount of true positives identified correctly). Given
two clustering solutions, C and C ′ presenting the ground truth and the obtained clus-
tering solution, respectively. F-measure of a cluster i ofC ′

i is calculated using Eq. 4.8,
where Cj represents the cluster with most instances from C ′

i. The final F-measure

20

value of C ′ is obtained using Eq. 4.9, where n is the total number of clusters in C ′.
F-measure ranges between 0 to 1, where 1 is the perfect value.

F (C ′
i) = 2 |Cj

⋂
C ′

i|
|Cj |+ |C ′

i|
. (4.8)

F (C ′) = 1
n

n∑
i=1

Fi
. (4.9)

Jaccard Index: Also known as the Jaccard similarity coefficient [84], it is used
to measure the similarity between two clustering solutions, i.e., the benchmark and
the obtained clustering solution. It ranges between 0 and 1, where values closer to
1 present higher similarity between the clustering solutions. Jaccard Index of two
clustering solutions A and B is defined in equation 4.10. The numerator presents
the number of data points of same class within the same cluster of A and B, and the
denominator presents the total number of data points in the same clusters of A and
B.

JaccardIndex(A, B) = | A ∩B |
| A ∪B | (4.10)

Accuracy: Accuracy presents the fraction of correct predictions made from the total
predictions. It is used to evaluate the performance of the proposed clustering solution.
Accuracy is calculated using Eq. 4.11, where p and n represent the correct and total
predictions, respectively. It can be noted that accuracy might not be a good measure
when the dataset does not have a balanced distribution of classes or labels, as the
accuracy value will be high even if only one class is correctly predicted.

Accuracy = p

n
(4.11)

4.3.3 Information Theory
Adjusted Mutual Information: Adjusted Mutual Information (AMI) [85, 86] is
an adjusted-for-chance version of MI. The value of MI is impacted by the number of
clusters, and the higher the number of clusters, the better the value which is accounted
for inAMI. AMI of two clustering solutions,A andB can be obtained using the below
formula [87], where H(.) represents the entropy of the clustering solutions and the
expected MI between A and B is represented using E(MI(A, B)). It has an upper
limit of one when the two clustering solutions perfectly match each other.

AMI(A, B) = [MI(A, B)− E(MI(A, B))]
[avg(H(A), H(B))− E(MI(A, B))] (4.12)

Homogeneity and Completeness: Homogeneity and completeness [88] are both
independent of the absolute values of the cluster labels. They are used to compare two

21

clustering solutions (the benchmark considered and the obtained clustering solution).
A perfectly homogeneous clustering solution’s clusters contain instances of only one
class of benchmark in each cluster of the obtained clustering solution. Whereas for
perfect completeness, all instances of a class from the benchmark are in the same
cluster. These measures are not symmetric, i.e., replacing benchmark labels with
clustering solution labels or vice-versa will not give the same results but instead give
the output of the other measure. The formula used to obtain the homogeneity and
completeness of two clustering solutions is complex and out of the scope of this
thesis and, hence, is not presented.

Apart from evaluating the final clustering solutions, the SI is also used in the
clustering process. In papers I, III, and IV, SI is used to find the optimal number of
clusters when using k-means to do the initial clustering of the data points in a chunk.
In Paper VIII, SI along with Calinski Harabasz, Davies Bouldin, and Connectivity
are used to determine the optimal number of clusters while using k-means to cluster
the data in different layers (multi-layered clustering approach is used in this paper).
In Paper V, SI is used to evaluate the quality of the local clustering solutions to decide
which ones will be used for building the global model. It can be noted that in papers
IV and VIII, the final results are evaluated using prior domain knowledge available
with the help of experts and statistics.

Table 4.2: Evaluation measures used across papers

Evaluation measures Papers
Internal
Silhouette Index I, III, IV, VIII
Davies Bouldin VIII
Calinski Harabasz Index VIII
Connectivity VIII
External
Adjusted Rand Index II, III, V, VII
F-measure I, VI
Jaccard Index I
Accuracy VI
Information theory
Adjusted Mutual Information V, VII
Purity/Homogeneity II, III, V
Completeness V

4.4 Research Methodology
Studies conducted in this thesis use research methodologies implementation, experi-
mentation, and case study [89]. Novel clustering approaches are proposed and eval-
uated using experimentation in each of the studies included in this thesis, except
for paper IV. In Paper IV, a case study is conducted where the algorithm proposed
in III is applied and evaluated in the smart building domain. Various types of ex-
periments are conducted to validate the algorithms using different types of data sets
(more information about the data sets used is present in Section 4.1). The different ex-

22

perimental setups have been specially designed to study and evaluate the developed
algorithms’ performance and capability of capturing new data characteristics. Those
are discussed in relation to the different conducted studies further in this section. The
applicability of the algorithms to problems in different applied scenarios, such as use
cases in logistics, smart building, and performance monitoring of assets, have also
been studied, and the algorithms have been validated on real-world data sets provided
by industrial partners. Other characteristics of some of the proposed algorithms that
have been analyzed and explored are explainability and interpretability.

In Paper I, the proposed algorithm, Split-Merge Evolutionary Clustering has
been comparedwith two other state-of-the-art algorithms, namelyPivotBiCluster [34]
and Dynamic Split and Merge Clustering algorithm [48] using the cover-type and
wine quality data sets. Along with these comparisons, experimentation was also done
to evaluate if the size of newly arriving data impacts the algorithm’s performance, for
which yeast and anthropometric data sets are used.

Papers II and III propose novel multi-view clustering approaches, entitled MV
Split-MergeClustering (based on Split-Merge Evolutionary Clustering) andMVMulti-
Instance Clustering, respectively. Paper II is an initial study where the proposed algo-
rithm is evaluated on anthropometric data. The proposed algorithm is also compared
to its batch version. Paper III tries to improve the performance, understandability,
and interpretability of the results compared to the algorithm proposed in Paper II and
has been evaluated on both anthropometric and real-world sensor data of the heating
system from the smart building domain. The results obtained on the anthropometric
data are compared to those obtained in Paper II. Paper IV is an applied work where
the potential of MV Multi-Instance Clustering is investigated in the smart building
domain. Real-world sensor data of the heating and tap-water systems from the smart
building systems are used in the study. Two different sets of experiments are designed
and performed to showcase the algorithm’s potential in context-aware modeling of
system behavior and integration analysis of system performance. The study also
presents different visualization techniques to aid domain experts in understanding
the results and using them to analyze and monitor system performance.

In Paper V, the proposed MST-based multi-view algorithm (MST-MVS) has
been evaluated on three data sets (Dim32, Cover-type, and Real-world sensor data
of the heating system from the smart building domain), it has been compared toMV
Multi-Instance Clustering (algorithm proposed in Paper III) using the real-world sen-
sor data set. Two new approaches, BNodes, and LEdges, are proposed to calculate
the artificial nodes that are used to transfer the knowledge extracted from the global
model to cluster the newly arriving data chunks. Various experiments are conducted
to evaluate and justify that different steps included in the algorithm improve the qual-
ity of the final clustering solution generated. In one experimental setup, the useful-
ness of the knowledge transfer is studied. Another set of experiments is done to
understand how the quality of the local models affects the built global model.

Papers VI and VII propose unsupervised domain adaptation algorithms, DIBCA

23

and DIBCA++, respectively. Both these papers use sensor data from the smart logis-
tics domain. Paper VI uses a publicly available HAR data set (HAR-1) to showcase
the algorithm’s potential in the automatic data labeling task, and sensor data is used
to showcase its potential in the domain adaptation task. The sensor data used in this
paper is obtained from a single device operating at two different locations. Paper
VII uses another HAR data set (HAR-2) and sensor data obtained from five different
devices. The sensor data is used to understand how the similarity between data from
different domains (devices) affects DIBCA++. Using both data sets, the ability of
DIBCA++ to transfer new knowledge between the domains is showcased. DIBCA++
is also experimentally compared to its predecessor DIBCA in Paper VII.

Paper VIII proposes a hybrid clustering methodology, combining multi-layer
data analysis with SNNS and hypergraph clustering. The algorithm is developed
to be used to interpret and analyze heterogeneous multi-source data with missing
values. A real-world data set related to condition monitoring of assets is used to
validate the approach. The obtained homogeneous clusters are used to derive KPIs
and are evaluated on the sensor data related to these compressors.

4.4.1 Challenges
The main challenges we have faced during the implementation and evaluation of the
proposed algorithms are briefly stated in this section.

Evaluating unsupervised models: Since ground truth is not available in most situa-
tions, evaluating the obtained final clustering solution can sometimes be challenging.
Even though internal cluster evaluation measures are available, they might give con-
tradictory results as they evaluate different aspects of the clustering solution. Thus,
sometimes making it difficult to identify the best-performing one. This has also been
highlighted by Luxburg et al. [90] in their work.

In addition, there are only a few cluster validation measures for streaming data
[91]. Instead, most researchers in the field use validation measures for traditional
clustering algorithms which might not be very optimal for streaming data scenarios.

Comparisonwith state-of-the-art: In the fields where this thesis is conducted, there
are not many standardized benchmark algorithms against which the proposed algo-
rithms can be compared and evaluated. Even when similar algorithms are identified,
their implementations are unavailable in most scenarios. The alternative is to imple-
ment them by ourselves, but there might be some disparities in the implementation as
there is a chance of misinterpretation of some minute details. Therefore, motivated
by Luxburg et al. [90] belief that clustering should not be treated as an application-
independent mathematical problem in the majority of the studies collected in this the-
sis the proposed algorithms/approaches are evaluated on real-world industrial prob-

24

lems.

4.5 Validity Threats
This section describes the various validity threats that could have occurred in the
process of conducting the thesis and the measures taken to overcome them.

4.5.1 Internal Validity Threat
Internal validity addresses the concerns related to the effects of experimental setup on
the results [92–94]. Multiple test sets are used to avoid selection bias while dividing
the data set into different chunks. For example, 10 different test sets of the data set are
used in Papers I, II, III, and V for all the conducted experiments in all experimental
scenarios except when real-world sensor data is used. The average value (Paper V
uses the minimum and maximum values as well) is considered as the final result.

4.5.2 External Validity Threat
External validity reflects the generalisability of the results obtained in a study [92–
94]. Experiments conducted across all the papers included are designed with caution
to mitigate such threats. In most papers, more than one data set is used to evaluate
the proposed algorithm to avoid results specific to a particular scenario or use case.
Only papers II, IV, and VIII use one type of data set for evaluation. Paper II is an
initial study, and hence only a single data set is used. Paper IV uses the algorithm
proposed in Paper III (where initial evaluation has been done on other data sets) in an
applied scenario of smart building systems. Paper VIII is also an applied study where
the proposed approach is tested on the use case related to performance monitoring of
industrial assets. Testing the algorithm on more than one data set can generalize the
performance of the algorithm when compared to using it just on one data set. How-
ever, there might still be some use cases or scenarios where the proposed algorithms
are not appropriate. Luxburg et al. [90], in their study, highlight the need to study
clustering algorithms as an application-dependent problem.

4.5.3 Construct Validity Threat
Construct validity addresses the concerns related to the results being deviated from
the desired conceptual output [92–94]. Such threats could become a reality if the
implemented algorithm does not produce results similar to the algorithm proposed
during the development phase. To avoid such threats, the proposed algorithms, ex-
perimental scenarios, and setups are well discussed within the research group before
the implementation phase begins. During the implementation phase, care is taken

25

by conducting periodical tests to ensure that the code’s functionality is as expected.
This is done to avoid logical and/or run time errors, which are difficult to identify
compared to compile time errors.

Devoted experiments are conducted to select the algorithm’s parameters in most
cases. For Paper IV, we studied different sizes of data chunks, different techniques
for finding artificial nodes, etc. Empirical methods have been used to determine the
number of clusters when this information is unavailable. Papers I, III, and IV use
the elbow method based on the SI to determine the k value when using the k-means
algorithm; Paper VIII uses other cluster evaluation measures along with SI as stated
in Section 4.3.

4.5.4 Conclusion Validity Threat
Conclusion validity deals with the effectiveness of the research in terms of treatment
of data, how the experiments are conducted, and the obtained outcomes [94]. In gen-
eral, all the papers have undergone a peer-review process. They are published (except
Paper VII, which, as of 4th April 2024, is under review) in various conferences and
journals, which validates the experimental treatment used across the papers.

26

5 Results and Analysis

This chapter summarizes the results of the thesis. We have identified three main
research domains to which the thesis has contributed: evolve clustering, multi-source
data analysis, and domain adaptation. The thesis achievements are presented and
discussedwith respect to these domains. Furthermore, potential application scenarios
are outlined for the algorithms proposed in each domain. Finally, all the research
questions formulated in this thesis are stated and answered.

5.1 Evolving Clustering
The thesis’s results contributing to the evolving clustering domain are presented in
papers I, II, III, IV, and V. papers I, III, and V propose novel evolving clustering algo-
rithms, namely Split-Merge Evolutionary Clustering, Bi-Correlation MI-Clustering,
and MST-MVS. Split-Merge Evolutionary Clustering is also used in Paper II in a
multi-view context. It can be noted that Bi-Correlation MI-Clustering is a part of
MVMulti-Instance Clustering algorithm, which along withMST-MVS are developed
to handle multi-view data in a streaming fashion. Paper IV is an applied paper us-
ing the algorithm proposed in Paper III in the smart building domain. Algorithms
proposed/used in papers I, II, III, and IV use bipartite correlation clustering based on
different approaches. The correlations between the existing clustering model and the
clustering solution of the newly arriving data chunk are considered to determine the
similarities and differences between the two clustering models. Based on the corre-
lations, the existing clusters are either merged, split, or retained as they were, and a
new, updated clustering model is obtained. Figure 5.1 (taken from Paper I) visualizes
the bipartite correlation clustering or the split-merge framework of the Split-Merge
Evolutionary Clustering where C and C ′ represent the existing and new clustering
models, respectively.

In the conducted experiments, Split-Merge Evolutionary Clustering has exhib-
ited its ability to integrate newly arriving data continuously. When compared to two
other state-of-the-art algorithms, PivotBiCluster [34], and Dynamic split and merge
clustering [48], it is observed that different algorithms excelled for different evalu-
ation measures. This validates what Luxburg et al. [90] have stated, that different
cluster validation measures can sometimes produce contradictory results, and it is

27

Figure 5.1: Visualization of Split-Merge framework in three different scenarios. a) bi-clique with under-clustered
nodes (C1 and C2 correlate with C′

1); b) bi-clique with over-clustered nodes (C3 correlates with C′
2, C′

3 and
C′

4); c) a bi-clique where there is a need to be decomposed into subcomponents, the second step presents
the transformation into tripartite graph with split (left) and merge (right) subcomponents. Figure is taken from
Paper I.

difficult to validate how the clustering algorithm performs using these validation
measures. Luxburg et al., therefore, highlight the importance of studying cluster-
ing algorithms considering their final usage and not as an application-independent
problem. It is interesting to discover that the number of clusters produced by the pro-
posed Split-Merge Evolutionary clustering is closer to the benchmark solution when
compared to the other two algorithms.

Bi-Correlation MI-Clustering developed in Paper III is based on MI clustering
and bipartite correlation clustering. In Split-Merge Evolutionary Clustering, only
representatives from the clusters are used to find the correlations, which might some-
times impact the performance. The proposed algorithm in Paper III overcomes this
by using MI-Clustering, where each cluster is treated as an individual data object
(bags of instances). The experimental results also show improved performance when
MI-Clustering is used (see Section 5.2). Paper V proposes yet another evolving clus-
tering approach based on MST clustering. Unlike others, this algorithm uses knowl-
edge from the global model (model integrating knowledge from all the views) when
building the clustering solution of the next data chunk.

The algorithms proposed/used in Papers I, II, III, and IV can be categorized as
the sliding window processing models and the MST-MVS (Paper V) as a landmark
window model based on the classification of processing methods of streaming data
from the literature [95]. Note that, unlike regular sliding window models, where one
ormore elements are processed in each fixed-element countingwindow, the proposed
algorithms categorized into this do not have a hard restriction on the chunk sizes, and
they may vary, but the algorithm always uses two chunks in each iteration (chunks t

28

and t− 1).
Note that the above-discussed algorithms automatically adapt the clustering so-

lution to handle the changes in data characteristics due to phenomena like concept
drift. We want to study this aspect in future works further to be able to analyze
and understand how the proposed algorithms fare in different types of concept drift
scenarios, classified as sudden, incremental, gradual, recurring, blip, or noise [25].
Based on our conceptual understanding, the proposed algorithms perform better in
the case of recurring, sudden, and incremental drifts. Blips or noises may not be iden-
tified due to the following reasons: (i) the underlying algorithm used to identify the
initial clusters might not be able to identify the noise as a new cluster due to a low
number of instances, (ii) specifically in papers III and IV only closed concepts are
used while building the global model (combined model of different views obtained
after using Bi-Correlation MI-Clustering to obtain clustering solution in each view)
filtering out the noise.
Application Scenarios: These proposed algorithms could be used in a wide range
of real-world application scenarios where the data is generated in a continuous fash-
ion and characterized by an evolving nature. Some examples include (i) analysis and
performance monitoring of the heating sub-system in the smart building domain; due
to changes in behavioral patterns of humans and climate changes, the normal system
behavior is not constant and is evolving. (ii) patient profiling and monitoring; these
models could be used for precision medicine, where patients are divided into groups
to provide personalized treatment. Patients in a group are expected to have similar
characteristics, thus requiring similar treatment. As more information from different
patients is obtained, the existing clustering model could become outdated due to fac-
tors like advancements in the medical fields, the arrival of patients with new disease
characteristics, etc., and the need arises to rebuild the existing clustering model to be
able to adapt to the new trends. In such situations, the proposed evolving clustering
algorithms could be used. Papers III, IV, and V have evaluated the functionality of
the proposed algorithms in the smart building domains.

5.2 Multi-Source Data Analysis
Papers II, III, IV, V, and VIII of this thesis contribute to the area of multi-source
data analysis. Novel multi-view clustering algorithms MV Split-Merge Clustering,
MV Multi-Instance Clustering, and MST-MVS are proposed in Papers II, III, and V,
respectively. As stated before, Paper IV is an applied work whereMVMulti-Instance
Clustering is evaluated in the smart building domain. Its potential in analyzing and
monitoring the sub-systems (heating and tap-water systems are considered in the
study) of the smart building domain is demonstrated. Paper VIII presents a hybrid
clustering workflow for analyzing incomplete heterogeneous data.

FCA is used in papers II, III, and IV to integrate knowledge from different views

29

into a global model consisting of a formal context and concept lattice. In addition to
FCA, closed patterns are used in papers III and IV to extract frequently occurring pat-
terns from the formal context, thereby reducing the complexity of the concept lattice.
Multi-view stream clustering algorithms proposed in Papers II and III can perform
both horizontal and vertical data integration. That is, the algorithms can integrate the
clustering solution of newly arriving data chunks with the existing clustering solu-
tion, and they can integrate the knowledge from different views into a global model.
These algorithms also provide flexibility in choosing which views to consider for
building the global model. If three views are available, the algorithms can use all
three or just two of them to build the global model. This type of functionality can
be advantageous if information from any view is missing due to system or device
failures or other similar reasons. Figure 5.2 visualizes a high-level overview of the
functionality of the MV Split-Merge Clustering and MV Multi-Instance Clustering
algorithms with three different views.

Figure 5.2: High-level overview of the functionality ofMV Split-Merge Clustering and MVMulti-Instance Cluster-
ing algorithms where three different views are identified.

When compared to its batch version, the MV Split-Merge Clustering algorithm
proposed in Paper II has produced comparable results. The algorithm proposed in
Paper II is outperformed byMVMulti-Instance Clustering algorithm proposed in Pa-
per III for the experiments conducted on the anthropometric data set. In addition,
when evaluated on the real-world sensor data, the MV Multi-Instance Clustering al-
gorithm (Paper III) is able to perform continuous monitoring, analysis, and mining
of streaming data. When new data chunks arrive, the algorithm is able to perform
stable integration. It is observed that some concepts from the previous chunk are re-

30

tained or expanded with new instances. The algorithm has also successfully detected
deviating behavior that is already known to have occurred in the system during the
considered time.

Paper IV is an applied paper whereMVMulti-Instance Clustering is further eval-
uated in the smart building domain. The heating and tap-water sub-systems, which
depend on each other, are studied in different scenarios. The study demonstrates the
algorithm’s potential in performing context-aware modeling and integrated system
analysis of system behaviors. Various visualization and data mining techniques are
proposed for each step of the algorithm, which can aid experts in step-by-step analysis
and easy understandability of the results. The algorithm successfully detected some
known and unknown deviating behaviors that have occurred in the system during the
time considered for experimentation. The experimental results show the ability of
MV Multi-Instance Clustering to monitor, analyze, and detect deviating behaviors
of systems in the smart building domain. The obtained global model from different
views depicted correlations between different views.

MST-MVS proposed in Paper V uses a different integration approach to obtain
the global model. Cluster representatives from all the views are used in this pro-
cess. The local clustering models of each view are evaluated before being used to
build the global model. Only the views whose local clustering models have an SI
score greater than the predefined threshold are used to build the global model. For
each representative qualified to be used, its attribute values from other views are also
extracted. An integrated matrix is built using this information (representatives of dif-
ferent clusters from each view and their corresponding attributes from other views).
This is followed by obtaining a final global model by clustering the data points in
the matrix using MST based clustering algorithm. The pre-evaluation of clustering
models in each view is done to ensure that the quality of the local clustering model
does not negatively affect the global model. It is important to maintain the quality
of the global model as the knowledge obtained from this is transferred and used to
seed the local clustering model of the next data chunks. A specifically devoted exper-
iment has studied this. Figure 5.3 (taken from Paper V) illustrates how knowledge is
transferred from one chunk to another inMST-MVS clustering algorithm.

MST-MVS has performed well on the synthetic data (Dim32) compared to other
data sets considered. This behavior can be backed logically as the synthetic data is
free from factors such as noise, outliers, and cluster overlap that could exist in real-
world data sets. The results indicate that the transfer of knowledge from the global
model to build the local clustering solutions of the next data chuck is beneficial in
the considered experimental scenarios. That is, the quality of the local clustering
solutions generated using the transferred knowledge is better than the one where this
knowledge is not available. Apart from these, the study has also proposed a post-
labeling technique to label each view’s data points into different clusters obtained
in the global model. This labeling technique has produced better results than the
Convex Non-negative Matrix Factorization (CNMF) based labeling technique used

31

Figure 5.3: High-level overview of MST-MVS clustering algorithm for data chunks A, B, and C showcasing how
knowledge from the global model of the previous chunk is used in building the clustering model of the new
data chunk. Figure is taken from Paper V.

in the study.
Paper VIII proposes a data analysis approach for high-dimensional multi-source

data with missing values. A multi-layered clustering approach followed by hyper-
graph clustering based on k-medoids and SNNS is used to achieve this. The approach
is developed to be able to effectively use data with missing values, reducing informa-
tion loss. This is done by using the layering approach, where each layer (similar to a
view) contains a subset of features representing an aspect of the data set. Data objects
having missing values in a layer are removed, but it can be noted that they are still
being used in other layers where the features are available. It can be noted that the
other multi-view clustering algorithms proposed in the study, except Paper V, also
work with missing and heterogeneous data, but they are not evaluated concerning this
aspect in those studies. The main purpose of the global models in these scenarios is
to showcase the relations between the local models; this can not be achieved for the
view with missing values. Figure 5.4 (taken from Paper VIII) presents the overview
of the different steps of the proposed approach. The proposed approach is tested in a
real-world use case related to condition monitoring of industrial assets, i.e., a fleet of
compressors used in very different conditions, like factories and hospitals in this case.
It is difficult to analyze and mine knowledge from such data as they have different
technical specifications and other characteristics, thus making it difficult to compare.
The approach helps to group these assets into homogeneous groups, thus enabling
easier analysis. The study uses high-dimensional metadata with missing values to
obtain these groups. The obtained groups are further validated using the time-series
data generated during their operation.
Application Scenarios: The multi-source nature of data is common in fields like
IoT, where data is collected using multiple sensors, or even in other scenarios where
the data is collected from different sources. In this thesis, the developed data mining
techniques are evaluated on real-world use cases in the areas of smart buildings and
performance monitoring of industrial assets. It can further be used in domains like
health care, where data is commonly heterogeneous and available in different formats

32

Set of data objects

I.1 Layering

Layer 1 (color and size)

II.1 Neighborhood
identification

Combining the clusters

I.2 Multi-layered clustering & Hypergraph formation

Clustered by color and size

n1

n3

n2

Clustered by shape

n4

n5

Layer 2 (shape)

II.2 Calculating SNNS &
Simple graph construction

III Cluster Integration
and Analysis

IV Deriving KPIs

Hyperedge Neighbours

n1 n1, n3, n4, n5

… …

n6 n6, n1, n2

Figure 5.4: Overview of proposed data analysis approach for analyzing incomplete heterogeneous data.
Figure is taken from Paper VIII.

like numerical data, images, etc. Data in this area is also prone to missing values for
reasons such as manual entry. The available information (feature set) can be divided
into various views, different learning algorithms suitable for the data in that view
can be used, and then relationships between them or consensus knowledge can be
obtained by building a global model.

5.3 Domain Adaptation
This thesis explores the area of unsupervised domain adaptation for time-series data
in papers VI and VII. Novel domain adaptation algorithms based on cluster integra-
tion are proposed. Paper VI proposesDIBCA, which has been optimized to be robust
to outliers in Paper VII with DIBCA++. The algorithms are developed to be able
to transfer new knowledge between domains. Both algorithms adapt clustering so-
lutions from different domains by identifying correlations across models and then
performing cluster integration. Cross-labeling of models across domains (the model
of one domain is applied to the representatives of the other domain) is used to iden-
tify the correlations. Two types of clusters are obtained from the algorithm: com-
mon clusters presenting the behavior present in both domains and private clusters
presenting the behavior of their respective domain. An integrated model that could
be used across domains is obtained by combining all the common and private clusters.
Along with the integrated model, two personalized adapted models are obtained, one
for each domain consisting of common clusters and their respective private clusters.
Figure 5.5 (taken from Paper VI) presents the flowchart showing different steps of
DIBCA and DIBCA++.

While the clustering algorithm used by DIBCA is based on ISM [96], which

33

uses the clusters’ low-value and high-value vectors as representatives, DIBCA++ is
developed to be robust to outliers by using the clusters’ mean, standard deviation,
and size. This is because DIBCA++makes use of all the data instances to obtain the
representatives, unlikeDIBCAwhere only minimum andmaximum values of each at-
tribute are considered to obtain the representatives. Clustering done in DIBCA++ is
inspired from [97], but unlike it, where the data is assumed to be normally distributed,
the proposed algorithm uses Chebyshev’s inequality, which satisfies most distribu-
tions to determine the interval describing cluster boundaries. Both algorithms use
only cluster representatives in their operations, thus making them resource-efficient
and also preserving privacy as actual data points are not required to be disclosed.

Figure 5.5: Overview of different steps of DIBCA and DIBCA++. Figure is taken from Paper VI.

DIBCA’s potential in the data labeling task is evaluated using the PAMAP2 data
set, where it has performed well and correctly labeled up to 91.1% of the clusters, and
in the cases where the correct match is not found, they are not labeled. In the smart
logistics domain, based on the obtained accuracy and F-measure values the perfor-
mance of the integrated and adapted models is better or comparable to the original
source and target models of the considered domain. The experimental results show-
case the capability of DIBCA++ to transfer knowledge between domains, leading to
improved performance. In the smart logistics use case, the adapted source and tar-

34

get models produced by DIBCA++ have performed better 70% and 80% of the time,
respectively. Both the algorithms have been compared against each other using the
smart logistics and DaLiAc data sets. The results demonstrate the better performance
of DIBCA++.
Application Scenarios: Domain adaptation algorithms can be used in application
scenarios where there is a requirement for the model to be adapted to be used in
different (new) locations or by different people/customers that have different data
characteristics from those the model has been exposed during the training. One ex-
ample is the case of automatic vehicles, where the actual environment they would be
used in might be different from what they have been trained in. For example, if the
model is trained in a location with a hot climate, but the car needs to be used in a
country with a cold climate and snowfall. The model must be adapted to the new cir-
cumstances to perform well, which can be done using domain adaptation. This thesis
evaluates the proposed domain adaptation algorithms in the smart logistics use case
to correctly identify and perform GNSS activation as required based on the tracker’s
current location. This helps reduce energy consumption and localize trackers with
low energy capacities. The tracker can be used in various locations like cities and
countryside with many differences like the number of cell towers, traffic, etc.; the
model should be able to adapt to these new circumstances. We have also tested the
algorithms in the case of HAR, where knowledge obtained from training the model
on one person’s data could be transferred to another.

5.4 Summary
This section presents the research questions formulated in this thesis and summarizes
how each of these is addressed.

RQ1 How can a clustering solution be updated to accommodate and catch evolving
characteristics of continuously arriving data?

In Papers I, II, III, and IV, the newly arriving data chunk is initially clustered.
Then the existing clustering model is updated based on the newly arriving data by
taking into account the correlations between the two clustering solutions. Therefore,
the updated clustering solution is based on the data characteristics of both the existing
clustering solution and the newly arriving data. Techniques like bipartite graphs and
MI clustering are used to achieve this. Unlike these, the algorithm proposed in Paper
V does not update the existing clustering solution when a new data chunk arrives.
Instead, a new clustering solution is built for each data chunk based on the current
data (landmark window model) and knowledge from the previous data chunk in the
form of the artificial node used in the MST.

RQ2 How can clustering models generated in a multi-view streaming context be

35

integrated into a robust global model capturing knowledge from different views?
In Papers II, III, and IV, FCA integrates the clustering models from different

views and builds a consensus clustering (global) model. The global model consists
of a formal context and a concept lattice. While building the formal context, the data
points are considered as the objects, and the cluster each data point belongs to in
each view is represented as the object’s properties. A novel integration approach has
been presented in Paper V; the global model is obtained by using MST clustering on
an integrated matrix. The integrated matrix is built using the representatives of each
cluster from the local clustering models and their attributes from other views. It can
be noted that only representatives of clusters that have passed the quality check are
used. This approach successfully integrated information from different views and
built a global model.

RQ3 How can we develop a resource-efficient domain adaptation algorithm for a
robust clustering model alignment to new domains?

Algorithms DIBCA and DIBCA++ are proposed to address this research ques-
tion in papers VI and VII. These algorithms find correlations between the domains
using cross-labeling (cluster representatives in one domain are labeled using the clus-
tering model of the other domain), followed by obtaining common and private clus-
ters based on the correlation obtained. Three different models are obtained using
these clusters: one integrated model containing all the common and private clusters
that could be used in both domains and two adapted (source/target) models for their
respective domains. These algorithms use only cluster representatives in their oper-
ations, making them resource-efficient.

RQ4 What kind of clustering analyses can be performed on heterogeneous multi-
source data with missing values to produce useful homogeneous clusters?

This research question is addressed in Paper VIII, where a novel hybrid cluster-
ing workflow is proposed. The approach uses multi-layered clustering to obtain a
hypergraph, followed by hypergraph clustering using k-medoids and shared nearest-
neighbor similarity. The multi-layered clustering assists in handling missing values,
reducing information loss. This clustering in each layer is done separately, and data
objects with missing values in a particular layer are removed but are still used in other
layers where their features are available. Other multi-view clustering algorithms (ex-
cept MST-MVS) proposed in this thesis are also capable of handling missing values,
but this feature of the algorithm is not evaluated in these studies.

36

6 Conclusions and Future
Work

This thesis has proposed and evaluated different clustering algorithms suitable for
analyzing and mining evolving and heterogeneous data. Through the various phases
(different papers) of the thesis, we have worked on improving the algorithms’ ro-
bustness by dealing with new challenges not addressed in the earlier versions. The
research results reported in this thesis have been identified to contribute to three re-
search areas: evolving clustering, multi-source data analysis and domain adaptation.
The results and contributions are summarized below.

Evolving Clustering

• Novel evolving clustering algorithms Split-Merge Evolutionary Clustering (Pa-
per I), Bi-Correlation MI-Clustering (Paper III) and MST-MVS (Paper V, also
capable of handling multi-view data) are proposed and evaluated.

• Results show the ability of the proposed algorithms to integrate newly arriving
data chunks into the existing clustering model.

Multi-Source Data Analysis

• Multi-view clustering algorithms MV Split-Merge Clustering (Paper II), MV
Multi-Instance Clustering (Paper III), andMST-MVS (Paper V), which are also
capable of handling evolving data, are proposed and studied.

• The clustering model and relationships between different views obtained by
MV Split-Merge Clustering are comparable to those obtained in the batch sce-
narios.

• MV Multi-Instance Clustering uses Multi Instance clustering and closed pat-
terns, which improves the performance and interpretability of the algorithm
compared to MV Split-Merge Clustering.

• MV Multi-Instance Clustering is evaluated in an industrial use case of a smart
building, and the results show the algorithm’s potential in monitoring and per-
formance analysis of the system.

37

• MST-MVS is capable of transferring knowledge between consecutive data chunks,
which is also enriched with a post-clustering pattern-labeling procedure. The
knowledge transfer is shown to have a positive impact on the generated clus-
tering solutions.

• A novel hybrid cluster analysis technique suitable for heterogeneous data with
many missing values is proposed and is evaluated in an industrial use case
of performance monitoring of assets. It is demonstrated to be capable of pro-
ducing homogeneous groups of assets, suitable for continuous monitoring and
deviating behavior detection.

Domain Adaptation

• DIBCA and DIBCA++ are proposed and evaluated in Papers VI and VII re-
spectively.

• DIBCA has performed well in automatic data labeling task on a publicly avail-
able human activity recognition data set.

• DIBCA++ is an optimized version ofDIBCA. It has demonstrated its capability
in transferring knowledge between the domains and the need/advantage for
personalizing the models for each domain.

Future Work
As a part of future work, we would like to study, analyze, and test how the

evolving clustering algorithms proposed/used in papers I, II, III, IV, and V perform
on different types of concept drift. According to our initial analysis, all the algorithms
developed in this thesis are naturally adaptive to concept drift scenarios. The algo-
rithm automatically adapts to new data characteristics, making it difficult to detect
the occurrence of concept drift. We plan to explore this aspect and work in the direc-
tion of being able to detect concept drifts. We also plan to simulate different concept
drift scenarios and test the algorithm’s performance in these different scenarios.

Explainability is an important feature to consider while developing machine
learning algorithms to be able to be accepted and used in a wide range of applica-
tions, especially if the models will be applied in fields like medicine or law. Two
of the algorithms included in the current thesis specially study and showcase the ex-
plainability aspect of our approaches (Papers IV and VII). Our future interests are
also directed to the area of studying explainable AI solutions. We are interested in
exploring whether the proposed domain adaptation approaches could be combined
with deep learning models to understand whether such combinations would improve
the explainability of transfer learning or domain adaptation models based on deep
learning.

38

7 Experiences and Learning
Outcomes

This PhD journey has been a great learning activity and has provided a lot of new ex-
periences. It has helped me to grow as a researcher over time. During my PhD study,
I have been involved in three different research projects and had the opportunity to
work with different researchers, including practitioners from the industry. I also got
a chance to go on a research visit to the EluciDATA lab, Sirris in Belgium. This has
exposed me to the challenge of integrating into a new research environment and has
further helped me create new international collaborations. The work done as a part of
this research visit has been successfully published as Paper VIII. Through my PhD,
I got an opportunity to work on different interesting research problems, which are
also very relevant for different application scenarios in the industry. I worked with
real-world data obtained from our industrial partners in domains like smart buildings,
smart logistics, and performancemonitoring of industrial assets. This has provided us
an opportunity to test how our proposed algorithm works on real-world data. While
working with real-world data, I understood the importance of knowing the system
and data well to be able to use the developed clustering models successfully. I acted
as a co-supervisor for a master’s thesis student, which has led to a successful publi-
cation (Paper V). It was a different experience being on the other side and added a
new responsibility in guiding the student to conduct the research.

A part of the PhD was done during the COVID pandemic. The pandemic has
completely changed everything and was unpredictable. Just like everyone, we were
forced to adapt to new situations. Working from home, virtual meetings and confer-
ences have become a new normal. During these tough times, I have learned to adapt
to new situations and deliver. This period demanded a lot of motivation. One of the
major fears that I partially overcame in this journey is public speaking. Over these
last few years, there have been numerous occasions, like internal monthly seminars
within our research group, workshops, and conferences where I had to present my re-
search work. These events have helped me to overcome my fears to a certain extent.
Writing has not been my forte, but I have come a long way in this as well.

39

Bibliography

[1] A. Bifet, B. Hammer, and F. Schleif. “Recent trends in streaming data analysis,
concept drift and analysis of dynamic data sets”. In: 27th European Symposium
on Artificial Neural Networks, ESANN 2019, Bruges, Belgium, April 24-26,
2019. 2019.

[2] M. Mohammed, M. B. Khan, and E. B. M. Bashier. Machine learning: algo-
rithms and applications. Crc Press, 2016.

[3] I. H. Sarker. “Machine Learning: Algorithms, Real-World Applications and
Research Directions”. In: SN computer science 2.3 (2021), pp. 160–160. DOI:
10.1007/s42979-021-00592-x.

[4] D. Xu and Y. Tian. “A Comprehensive Survey of Clustering Algorithms”. In:
Annals of Data Science 2 (Aug. 2015), pp. 165–193. DOI: 10.1007/s40745-
015-0040-1.

[5] A. K. Jain and R. C. Dubes. Algorithms for clustering data. English. Engle-
wood Cliffs, NJ: Prentice Hall, 1988, pp. xiv + 320. ISBN: 0-13-022278-X.

[6] A. Zubaroglu and V. Atalay. “Data stream clustering: a review”. In: Artificial
Intelligence Review 54.2 (2021), pp. 1201–1236. DOI: 10 . 1007 / s10462 -
020-09874-x.

[7] A. Farahani, S. Voghoei, K. Rasheed, and H. R. Arabnia. “A Brief Review
of Domain Adaptation”. In: Advances in Data Science and Information Engi-
neering. Ed. by R. Stahlbock, G. M. Weiss, M. Abou-Nasr, C.-Y. Yang, H. R.
Arabnia, and L. Deligiannidis. Cham: Springer International Publishing, 2021,
pp. 877–894. ISBN: 978-3-030-71704-9.

[8] A. S. Iwashita and J. P. Papa. “An Overview on Concept Drift Learning”.
In: IEEE Access 7 (2019), pp. 1532–1547. DOI: 10.1109/ACCESS.2018.
2886026.

[9] B. Jiang and et al. “Evolutionary multi-objective optimization for multi-view
clustering”. In: 2016 IEEE CEC 2016. 2016, pp. 3308–3315.

[10] Y. Yang and H.Wang. “Multi-view clustering: A survey”. In: Big Data Mining
and Analytics 1.2 (June 2018), pp. 83–107. ISSN: 2096-0654.

41

https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.1007/s40745-015-0040-1
https://doi.org/10.1007/s40745-015-0040-1
https://doi.org/10.1007/s10462-020-09874-x
https://doi.org/10.1007/s10462-020-09874-x
https://doi.org/10.1109/ACCESS.2018.2886026
https://doi.org/10.1109/ACCESS.2018.2886026

[11] L. Fu, P. Lin, A. V. Vasilakos, and S.Wang. “An overview of recent multi-view
clustering”. In: Neurocomputing 402 (2020), pp. 148–161. ISSN: 0925-2312.
DOI: https://doi.org/10.1016/j.neucom.2020.02.104.

[12] M. Carnein and H. Trautmann. “Optimizing Data Stream Representation: An
Extensive Survey on Stream Clustering Algorithms”. In: Business & Informa-
tion Systems Engineering (June 2019), pp. 277–297. DOI: 10.1007/s12599-
019-00576-5.

[13] L. Huang and et al. “MVStream:MultiviewData StreamClustering”. In: IEEE
Transactions onNeural Networks and Learning Systems 31.9 (2020), pp. 3482–
3496.

[14] W. Shao and et al. “Online multi-view clustering with incomplete views”. In:
2016 IEEE Int. Conf. on Big Data (Big Data). 2016, pp. 1012–1017.

[15] V. Wenz, A. Kesper, and G. Taentzer. “Clustering Heterogeneous Data Values
for Data Quality Analysis”. In: J. Data and Information Quality 15.3 (2023).

[16] D. Gamberger et al. “Multilayer Clustering: ADiscovery Experiment on Coun-
try Level Trading Data”. In: Discovery Science. Springer Int. Publ., 2014,
pp. 87–98.

[17] G. Pio, F. Serafino, D. Malerba, and M. Ceci. “Multi-type clustering and clas-
sification from heterogeneous networks”. In: Information Sciences 425 (2018),
pp. 107–126.

[18] M. C. de Goeij, M. van Diepen, K. J. Jager, G. Tripepi, C. Zoccali, and F. W.
Dekker. “Multiple imputation: dealing with missing data”. In: Nephrology
Dialysis Transplantation 28.10 (2013), pp. 2415–2420.

[19] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He. “A
Comprehensive Survey on Transfer Learning”. In: Proceedings of the IEEE
109.1 (2021), pp. 43–76. DOI: 10.1109/JPROC.2020.3004555.

[20] M. AlShehhi, E. Damiani, and D. Wang. “Toward Domain Adaptation for
small data sets”. In: Internet of Things 16 (2021), p. 100458. ISSN: 2542-6605.
DOI: https://doi.org/10.1016/j.iot.2021.100458.

[21] G. Csurka.Domain adaptation in computer vision applications. Cham: Springer
International Publishing, 2017.

[22] J. Maia, C. A. Severiano, F. G. Guimarães, C. L. de Castro, A. P. Lemos,
J. C. Fonseca Galindo, and M. Weiss Cohen. “Evolving clustering algorithm
based onmixture of typicalities for stream datamining”. In:FutureGeneration
Computer Systems 106 (2020), pp. 672–684. ISSN: 0167-739X. DOI: https:
//doi.org/10.1016/j.future.2020.01.017. URL: https://www.
sciencedirect.com/science/article/pii/S0167739X19312786.

42

https://doi.org/https://doi.org/10.1016/j.neucom.2020.02.104
https://doi.org/10.1007/s12599-019-00576-5
https://doi.org/10.1007/s12599-019-00576-5
https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/https://doi.org/10.1016/j.iot.2021.100458
https://doi.org/https://doi.org/10.1016/j.future.2020.01.017
https://doi.org/https://doi.org/10.1016/j.future.2020.01.017
https://www.sciencedirect.com/science/article/pii/S0167739X19312786
https://www.sciencedirect.com/science/article/pii/S0167739X19312786

[23] D. Kangin and P. Angelov. “Evolving clustering, classification and regression
with TEDA”. In: 2015 International Joint Conference on Neural Networks
(IJCNN). 2015, pp. 1–8. DOI: 10.1109/IJCNN.2015.7280528.

[24] A. Bouchachia. “Evolving clustering: an asset for evolving systems”. In: IEEE
SMC Newsletters 36 (2011).

[25] K. Wadewale and S. Desai. “Survey on Method of Drift Detection and Classi-
fication for time varying data set”. In: Int. Res. J. Eng. Technol. Vol. 2. 2015,
pp. 709–713.

[26] S. Agrahari and A. K. Singh. “Concept Drift Detection in Data Stream Min-
ing : A literature review”. In: Journal of King Saud University - Computer
and Information Sciences 34.10, Part B (2022), pp. 9523–9540. ISSN: 1319-
1578. DOI: https : / / doi . org / 10 . 1016 / j . jksuci . 2021 . 11 . 006.
URL: https : / / www . sciencedirect . com / science / article / pii /
S1319157821003062.

[27] J. Read, R. A. Rios, T. Nogueira, and R. F. de Mello. “Data Streams Are Time
Series: Challenging Assumptions”. In: Intelligent Systems. Ed. by R. Cerri and
R. C. Prati. Cham: Springer International Publishing, 2020, pp. 529–543. ISBN:
978-3-030-61380-8.

[28] J. Read. Concept-drifting Data Streams are Time Series; The Case for Contin-
uous Adaptation. 2018. arXiv: 1810.02266 [cs.LG].

[29] B. Ganter, G. Stumme, and R. Wille. “Formal Concept Analysis: Foundations
and Applications”. In: LNAI, no. 3626, Springer-Verlag, 2005.

[30] V. Boeva and et al. “Analysis of Multiple DNA Microarray Datasets”. In:
Springer Handbook of Bio-/Neuroinformatics. Ed. by N. Kasabov. Berlin, Hei-
delberg: Springer BerlinHeidelberg, 2014, pp. 223–234. ISBN: 978-3-642-30574-
0.

[31] A. Hristoskova, V. Boeva, and E. Tsiporkova. “A Formal Concept Analysis
Approach to Consensus Clustering of Multi-Experiment Expression Data”. In:
BMC Bioinformatics 15 (May 2014), p. 151.

[32] S. K. and A. K. Ch. “Concept Lattice Simplification in Formal Concept Anal-
ysis Using Attribute Clustering”. In: Journal of Ambient Intelligence and Hu-
manized Computing 10 (2018), pp. 2327–2343. ISSN: 1868-5145.

[33] A. S. Asratian, T. M. J. Denley, and R. Häggkvist. “Introduction to bipar-
tite graphs”. In: Bipartite Graphs and their Applications. Cambridge Tracts
in Mathematics. Cambridge University Press, 1998, pp. 7–22.

[34] N. Ailon, N. Avigdor-Elgrabli, E. Liberty, and A. van Zuylen. “Improved Ap-
proximation Algorithms for Bipartite Correlation Clustering”. In: Algorithms -
ESA 2011 - 19th Annual European Symposium, Saarbrücken, Germany, Septem-
ber 5-9, 2011. Proceedings. 2011, pp. 25–36.

43

https://doi.org/10.1109/IJCNN.2015.7280528
https://doi.org/https://doi.org/10.1016/j.jksuci.2021.11.006
https://www.sciencedirect.com/science/article/pii/S1319157821003062
https://www.sciencedirect.com/science/article/pii/S1319157821003062
https://arxiv.org/abs/1810.02266

[35] G. W. Flake, R. E. Tarjan, and K. Tsioutsiouliklis. “Graph clustering and min-
imum cut trees”. In: Internet Mathematics 1.4 (2004), pp. 385–408.

[36] R. Görke, T. Hartmann, and D. Wagner. “Dynamic Graph Clustering Using
Minimum-Cut Trees”. In: Algorithms and Data Structures. Ed. by F. Dehne,
M. Gavrilova, J.-R. Sack, and C. D. Tóth. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 339–350.

[37] B. Saha and P. Mitra. “Dynamic Algorithm for Graph Clustering Using Min-
imum Cut Tree”. In: Sixth IEEE International Conference on Data Mining -
Workshops (ICDMW’06). 2006, pp. 667–671.

[38] S. Schlag, T. Heuer, L. Gottesbüren, Y. Akhremtsev, C. Schulz, and P. Sanders.
“High-Quality Hypergraph Partitioning”. In: ACM J. Exp. Algorithmics 27
(Feb. 2023).

[39] A. Bretto.Hypergraph Theory: An Introduction. English. 1;2013;2013.; vol. 11.
Cham: Springer International Publishing AG, 2013. ISBN: 2192-4732.

[40] Y. Gao, Z. Zhang, H. Lin, X. Zhao, S. Du, and C. Zou. “Hypergraph Learning:
Methods and Practices”. In: IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 44.5 (2022), pp. 2548–2566. DOI: 10.1109/TPAMI.2020.
3039374.

[41] J. Foulds and E. Frank. “A review of multi-instance learning assumptions”.
In: Knowledge Engineering Review 25.1 (2010), pp. 1–25. DOI: 10.1017/
S026988890999035X.

[42] M. Zhang and Z. Zhou. “Multi-instance clustering with applications to multi-
instance prediction”. In: Applied Intelligence 31 (2009), pp. 47–68.

[43] S. Huang, Z. Xu, I. W. Tsang, and Z. Kang. “Auto-weighted multi-view co-
clustering with bipartite graphs”. In: Information Sciences 512 (2020), pp. 18–
30. ISSN: 0020-0255. DOI: https://doi.org/10.1016/j.ins.2019.09.
079.

[44] M. Bendechache andM.-T. Kechadi. “Distributed clustering algorithm for spa-
tial datamining”. In: 2015 2nd IEEE International Conference on Spatial Data
Mining and Geographical Knowledge Services (ICSDM). IEEE. 2015, pp. 60–
65.

[45] J. A. Silva, E. R. Faria, R. C. Barros, E. R. Hruschka, A. C. P. L. F. d. Carvalho,
and J. Gama. “Data Stream Clustering: A Survey”. In: ACM Comput. Surv.
46.1 (July 2013). ISSN: 0360-0300. DOI: 10.1145/2522968.2522981. URL:
https://doi-org.miman.bib.bth.se/10.1145/2522968.2522981.

[46] M. Ghesmoune, M. Lebbah, and H. Azzag. “State-of-the-art on clustering data
streams”. In: Big Data Analytics 1.1 (2016), pp. 1–27.

44

https://doi.org/10.1109/TPAMI.2020.3039374
https://doi.org/10.1109/TPAMI.2020.3039374
https://doi.org/10.1017/S026988890999035X
https://doi.org/10.1017/S026988890999035X
https://doi.org/https://doi.org/10.1016/j.ins.2019.09.079
https://doi.org/https://doi.org/10.1016/j.ins.2019.09.079
https://doi.org/10.1145/2522968.2522981
https://doi-org.miman.bib.bth.se/10.1145/2522968.2522981

[47] D. Chakrabarti, R. Kumar, and A. Tomkins. “Evolutionary clustering”. In:Pro-
ceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining. 2006, pp. 554–560.

[48] E. Lughofer. “A dynamic split-and-merge approach for evolving cluster mod-
els”. In: Evolving Systems 3.3 (Sept. 2012), pp. 135–151.

[49] R. Fa and A. K. Nandi. “Smart: Novel self splitting-merging clustering al-
gorithm”. In: European Signal Processing Conference, Bucharest, Romania,
August, 27-32. IEEE, 2012.

[50] M. Wang, V. Huang, and A.-M. C. Bosneag. “A Novel Split-Merge-Evolve
k Clustering Algorithm”. In: IEEE 4th International Conference on Big Data
Computing Service and Applications (BigDataService), Bamberg, Germany,
March 26-29. 2018.

[51] S. Wang and et al. “Multi-view Clustering via Late Fusion Alignment Maxi-
mization”. In: Proceedings of IJCAI-19. July 2019, pp. 3778–3784.

[52] C. Zhu. “Kappa Based Weighted Multi-View Clustering with Feature Selec-
tion”. In: Proceedings of ICCPR 2018. ICCPR ’18. Shenzhen, China, 2018,
pp. 50–54. ISBN: 978-1-4503-6471-3.

[53] X. Liu and et al. “Late Fusion Incomplete Multi-View Clustering”. In: IEEE
Trans. on Pattern Analysis and Machine Intelligence 41.10 (2019), pp. 2410–
2423.

[54] Y. Ye and et al. “Incomplete Multiview Clustering via Late Fusion”. In: Com-
putational Intelligence and Neuroscience 2018 (Oct. 2018), pp. 1–11.

[55] M. Yang et al. “Robust multi-view clustering with incomplete information”.
In: IEEE Trans. on Pattern Analysis and Machine Intelligence 45.1 (2022),
pp. 1055–1069.

[56] J. Chen, S. Yang, and Z. Wang. “Multi-view representation learning for data
stream clustering”. In: Information Sciences 613 (2022), pp. 731–746. DOI:
10.1016/j.ins.2022.09.045.

[57] S. J. Pan and Q. Yang. “A Survey on Transfer Learning”. In: IEEE Transac-
tions on Knowledge and Data Engineering 22.10 (2010), pp. 1345–1359. DOI:
10.1109/TKDE.2009.191.

[58] Y. Madadi, V. Seydi, K. Nasrollahi, R. Hossieni, and T. Moeslund. “Deep Vi-
sual Unsupervised Domain Adaptation for Classification Tasks: A Survey”.
In: IET Image Processing 14.14 (2020), pp. 3283–3299. ISSN: 1751-9659. DOI:
10.1049/iet-ipr.2020.0087.

45

https://doi.org/10.1016/j.ins.2022.09.045
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1049/iet-ipr.2020.0087

[59] S. Hundschell, M. Weber, and P. Mandl. “An Empirical Study of Adversarial
Domain Adaptation on Time Series Data”. In: Artificial Intelligence and Soft
Computing. Ed. by L. Rutkowski, R. Scherer, M. Korytkowski, W. Pedrycz,
R. Tadeusiewicz, and J. M. Zurada. Cham: Springer International Publishing,
2023, pp. 39–50. ISBN: 978-3-031-23492-7.

[60] G. Li, G. Kang, Y. Zhu, Y. Wei, and Y. Yang. “Domain Consensus Clus-
tering for Universal Domain Adaptation”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). June 2021,
pp. 9757–9766.

[61] J. Li, G. Li, Y. Shi, and Y. Yu. “Cross-domain adaptive clustering for semi-
supervised domain adaptation”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2021, pp. 2505–2514. DOI: 10.
1109/CVPR46437.2021.00253.

[62] S. Tang, Y. Zou, Z. Song, J. Lyu, L. Chen, M. Ye, S. Zhong, and J. Zhang.
“Semantic consistency learning on manifold for source data-free unsupervised
domain adaptation”. In:Neural Networks 152 (2022), pp. 467–478. ISSN: 0893-
6080.

[63] M. Zhu. “Source Free Domain Adaptation by Deep Embedding Clustering”.
In: 2021 18th Int. Computer Conference on Wavelet Active Media Technol-
ogy and Information Processing (ICCWAMTIP). 2021, pp. 309–312. DOI: 10.
1109/ICCWAMTIP53232.2021.9674068.

[64] W. Menapace, S. Lathuilière, and E. Ricci. “Learning to Cluster Under Do-
main Shift”. In:Computer Vision – ECCV 2020. Ed. by A. Vedaldi, H. Bischof,
T. Brox, and J.-M. Frahm. Cham: Springer International Publishing, 2020,
pp. 736–752. ISBN: 978-3-030-58604-1.

[65] J. A. Blackard, D. J. Dean, and C.W.Anderson.UCIMachine Learning Repos-
itory. 1998. URL: http://archive.ics.uci.edu/ml.

[66] K. Nakai and M. Kanehisa. “Expert Sytem for Predicting Protein Localization
Sites in Gram-Negative Bacteria”. In: PROTEINS: Structure, Function, and
Genetics 11 (1991), pp. 95–110.

[67] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reisa. “Modeling wine
preferences by data mining from physicochemical properties”. In: Decision
Support Systems 47.4 (2009), pp. 547–553.

[68] H. F. Golino, L. S. de Brito Amaral, S. F. P. Duarte, and et al. “Predicting
Increased Blood Pressure Using Machine Learning”. In: Journal of Obesity
2014 (2014).

[69] P. Fränti and S. Sieranoja. K-means properties on six clustering benchmark
datasets. 2018. URL: http://cs.uef.fi/sipu/datasets/.

46

https://doi.org/10.1109/CVPR46437.2021.00253
https://doi.org/10.1109/CVPR46437.2021.00253
https://doi.org/10.1109/ICCWAMTIP53232.2021.9674068
https://doi.org/10.1109/ICCWAMTIP53232.2021.9674068
http://archive.ics.uci.edu/ml
http://cs.uef.fi/sipu/datasets/

[70] A. Reiss and D. Stricker. Introducing a New Benchmarked Dataset for Activity
Monitoring. 2012. URL: https://archive.ics.uci.edu/ml/datasets/
pamap2+physical+activity+monitoring.

[71] H. Leutheuser, D. Schuldhaus, and B.M. Eskofier. “Hierarchical, multi-sensor
based classification of daily life activities: comparison with state-of-the-art
algorithms using a benchmark dataset”. In: PloS one 8.10 (2013), e75196. DOI:
10.1371/journal.pone.0075196.

[72] V. Kumar, J. K. Chhabra, and D. Kumar. “Impact of distance measures on the
performance of clustering algorithms”. In:Advances in Intelligent Systems and
Computing 243 (2014), pp. 183–190. DOI: 10.1007/978-81-322-1665-
0_17.

[73] R. Liu, H. Wang, and X. Yu. “Shared-Nearest-Neighbor-Based Clustering by
Fast Search and Find ofDensity Peaks”. In: Inf. Sci. 450.C (June 2018), pp. 200–
226.

[74] R.W.Hamming. “Error detecting and error correcting codes”. English. In:Bell
System Technical Journal 29.2 (1950), pp. 147–160.

[75] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, and E. Keogh.
“Experimental comparison of representation methods and distance measures
for time series data”. In: Data mining and knowledge discovery 26.2 (2013),
pp. 275–309.

[76] J. Handl, J. Knowles, and D. Kell. “Computational cluster validation in post-
genomic data analysis”. In: Bioinformatics 21.15 (2005), pp. 3201–3212.

[77] H. Van der Hoef and M. J. Warrens. “Understanding information theoretic
measures for comparing clusterings”. In: Behaviormetrika 46 (2019), pp. 353–
370.

[78] P. J. Rousseeuw. “Silhouettes: A graphical aid to the interpretation and vali-
dation of cluster analysis”. In: Journal of Computational and Applied Mathe-
matics 20 (1987), pp. 53–65.

[79] D. L. Davies and D. W. Bouldin. “A Cluster Separation Measure”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence PAMI-1.2 (1979),
pp. 224–227.

[80] T. Caliński and J. Harabasz. “A dendrite method for cluster analysis”. In:Com-
munications in Statistics-theory and Methods 3 (1974), pp. 1–27.

[81] L. Hubert and P. Arabie. “Comparing partitions”. In: Journal of Classification
2.1 (Dec. 1985), pp. 193–218.

[82] W. M. Rand. “Objective Criteria for the Evaluation of Clustering Methods”.
In: Journal of the American Statistical Association 66.336 (1971), pp. 846–
850. ISSN: 01621459.

47

https://archive.ics.uci.edu/ml/datasets/pamap2+physical+activity+monitoring
https://archive.ics.uci.edu/ml/datasets/pamap2+physical+activity+monitoring
https://doi.org/10.1371/journal.pone.0075196
https://doi.org/10.1007/978-81-322-1665-0_17
https://doi.org/10.1007/978-81-322-1665-0_17

[83] B. Larsen and C. Aone. “Fast and Effective Text Mining Using Linear-time
Document Clustering”. In: Proc. of the 5th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. KDD’99. ACM, 1999,
pp. 16–22.

[84] P. Jaccard. “The distribution of flora in the alpine zone”. In: New Phytologist
11 (1912), pp. 37–50.

[85] N. X. Vinh, J. Epps, and J. Bailey. “Information Theoretic Measures for Clus-
terings Comparison: Is a Correction for Chance Necessary?” In: Proceedings
of the 26th Annual International Conference on Machine Learning. ICML’09.
Montreal, Quebec, Canada, 2009, pp. 1073–1080.

[86] N. X. Vinh, J. Epps, and J. Bailey. “Information Theoretic Measures for Clus-
terings Comparison: Variants, Properties, Normalization and Correction for
Chance”. In: Journal of Machine Learning Research 11.95 (2010), pp. 2837–
2854. URL: http://jmlr.org/papers/v11/vinh10a.html.

[87] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau,M. Brucher,M. Perrot, and E. Duchesnay. “Scikit-learn:Machine
Learning in Python”. In: Journal of Machine Learning Research 12 (2011),
pp. 2825–2830.

[88] A. Rosenberg and J. Hirschberg. “V-measure: A conditional entropy-based
external cluster evaluation measure”. In: Proceedings of the 2007 joint confer-
ence on empirical methods in natural language processing and computational
natural language learning (EMNLP-CoNLL). 2007, pp. 410–420.

[89] “Developing your Objectives and Choosing Methods”. In: Thesis Projects: A
Guide for Students in Computer Science and Information Systems. London:
Springer London, 2008, pp. 54–70. ISBN: 978-1-84800-009-4. DOI: 10.1007/
978- 1- 84800- 009- 4_8. URL: https://doi.org/10.1007/978- 1-
84800-009-4_8.

[90] U. von Luxburg, R. C.Williamson, and I. Guyon. “Clustering: Science or Art?”
In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning.
Vol. 27. Proceedings of Machine Learning Research. 2012, pp. 65–79.

[91] M. Moshtaghi, J. C. Bezdek, S. M. Erfani, C. Leckie, and J. Bailey. “Online
cluster validity indices for performance monitoring of streaming data cluster-
ing”. In: International Journal of Intelligent Systems 34.4 (2019), pp. 541–
563.

[92] W. R. Shadish, T. D. Cook, and D. T. Campbell. Experimental and quasi-
experimental designs for generalized causal inference. Houghton, Mifflin and
Company, 2002.

48

http://jmlr.org/papers/v11/vinh10a.html
https://doi.org/10.1007/978-1-84800-009-4_8
https://doi.org/10.1007/978-1-84800-009-4_8
https://doi.org/10.1007/978-1-84800-009-4_8
https://doi.org/10.1007/978-1-84800-009-4_8

[93] R. Feldt and A.Magazinius. “Validity Threats in Empirical Software Engineer-
ing Research - An Initial Survey”. In: Proceedings of the 22nd International
Conference on Software Engineering&Knowledge Engineering (SEKE’2010),
Redwood City, San Francisco Bay, CA, USA, July 1 - July 3, 2010. Knowledge
Systems Institute Graduate School, 2010, pp. 374–379.

[94] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén.
“Planning”. In: Experimentation in Software Engineering. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 89–116. ISBN: 978-3-642-29044-2. DOI:
10.1007/978-3-642-29044-2_8. URL: https://doi.org/10.1007/
978-3-642-29044-2_8.

[95] M. Bahri, A. Bifet, J. Gama, H. Gomes, and S. Maniu. “Data stream analysis:
Foundations, major tasks and tools”. In:Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery 11.3 (2021). DOI: 10.1002/widm.1405.

[96] D. L. Iverson. “Inductive SystemHealthMonitoring.” In: IC-AI. 2004, pp. 605–
611.

[97] P. Davidsson. “Coin Classification Using a Novel Technique for Learning
Characteristic Decision Trees by Controlling the Degree of Generalization”.
In: International Conference on Industrial, Engineering and Other Applica-
tions of Applied Intelligent Systems. 1996.

49

https://doi.org/10.1007/978-3-642-29044-2_8
https://doi.org/10.1007/978-3-642-29044-2_8
https://doi.org/10.1007/978-3-642-29044-2_8
https://doi.org/10.1002/widm.1405

Paper I
Bipartite Split-Merge Evolutionary
Clustering

Veselka Boeva, Milena Angelova, Vishnu Manasa Devagiri, Elena Tsi-
porkova
In: Agents and Artificial Intelligence, Ed. by J. van den Herik, A. P.
Rocha, and L. Steels. Cham: Springer International Publishing, 2019,
pp. 204–223, DOI: 10.1007/978-3-030-37494-5_11

Abstract

Wepropose a split-merge framework for evolutionary clustering. The
proposed clustering technique, entitled Split-Merge Evolutionary Clus-
tering is supposed to be more robust to concept drift scenarios by pro-
viding the flexibility to consider at each step a portion of the data and
derive clusters from it to be used subsequently to update the existing
clustering solution. The proposed framework is built around the idea
to model two clustering solutions as a bipartite graph, which guides the
update of the existing clustering solution by merging some clusters with
ones from the newly constructed clustering while others are transformed
by splitting their elements among several new clusters. We have evalu-
ated and compared the discussed evolutionary clustering technique with
two other state of the art algorithms: a bipartite correlation clustering
(PivotBiCluster) and an incremental evolving clustering (Dynamic split-
and-merge).
Keywords: Data mining, Dynamic clustering, Evolutionary clustering,
Bipartite clustering, Split-merge framework, Unsupervised learning.

1 Introduction
The problem addressed in this article deals with the development of evolutionary
clustering algorithm that can be used to (continuously) adjust existing clustering so-
lution to match newly arrived data. For example, in many real-world applications
such as personalizing customer recommendations, the information available in the
system database is periodically updated by collecting new data. The available data

51

elements, e.g., customers of a retailing company, are usually partitioned into a num-
ber of segments (clusters of customers with similar product preferences). As the data
increases we need to re-group existing data and also accommodate new customers in
the existing customer segments. However, the existing original segments (clusters)
can become outdated due to shifts in preferences and characteristics of the newly
attracted customers. Another example is profiling of users with wearable applica-
tions with the purpose to provide personalized recommendations. As more users get
involved one needs to update the division of the initial set of users into groups of
characteristic profiles and also assign new incoming users to these groups.

In the context of profiling of machines (industrial assets) for the purpose of condi-
tion (health) monitoring the existing original clusters can become outdated caused by
aging of the machines and degradation of performance due to influence of changing
external factors. This gradual or abrupt (e.g. due to software update) model invali-
dation is in fact known as a concept drift and requires that the clustering techniques,
used for deriving the original machine profiles, can deal with such a concept drift
and enable reliable and scalable model update.

Evolving clustering models are good candidate to tackle concept drift scenarios
as discussed above. They have been designed to mine very large datasets or online
continuous data streams [1] in an unsupervised learning context by grouping and
summarizing data in a fast incremental manner. Evolving clustering models are also
referenced as incremental or evolving (dynamic) clustering methods, because they
can process data step-wise and update and evolve cluster partitions in incremental
learning steps [2]. Incremental clustering methods process one data element at a time
and maintain a good solution by either adding each new element to an existing cluster
or placing it in a new singleton cluster while two existing clusters are merged into
one [3], [4], [5]. Incremental algorithms also bear a resemblance to one-pass stream
clustering algorithms [6]. Although, one-pass stream clustering methods address the
scalability issues of the clustering problem, they are not sensitive to the evolution of
the data, because they assume that the clusters are to be computed over the entire data
stream. This implies that changes in the characteristic of newly arriving data are not
well reflected while building the clustering solution.

Dynamic clustering is also a form of online/incremental unsupervised learning.
However, it considers not only the incremental fashion of building the clustering
model, but also self-adaptation of the built model. In that way, the incremental model
construction deals with the problem of model re-training over time and memory con-
strains, while dynamic aspects (e.g., data behavior, clustering structure) of the model
to be built can be captured via adaptation of the current model. Notice that the dy-
namic (evolving) clustering paradigm is also close to the ideas of stream reasoning [7].
Stream reasoning studies the application of inference techniques to data streams to
perform continuous reasoning tasks. The access to the stream is managed by creat-
ing time-dependent finite views over the streams (windows) over which the tasks are
performed. Window contains a portion of the input streams, i.e. a set of timestamped

52

data items, that represents the data needed to solve the task at the current time instant.

The clustering scenario discussed in this work is different from the one treated by
incremental clustering methods. Namely, we are interested in clustering techniques
that enable to compute clusters on a new portion of data collected over a defined
time period (window) and to update the existing clustering solution by the computed
new one. Such an updating clustering should better reflect the current characteris-
tics of the data by being able to examine clusters occurring in the considered time
period and eventually capture interesting trends in the area. In [8], we have studied
two different clustering algorithms to be suited for the discussed scenario: PivotBi-
Cluster [9] and Split-Merge Evolutionary Clustering. Both algorithms are bipartite
correlation clustering algorithms that do not need prior knowledge about the opti-
mal number of clusters in order to produce a good clustering solution. Notice that
in our considerations the input graph nodes of PivotBiCluster algorithm are clusters.
In the final clustering generated by the PivotBiCluster algorithm some clusters are
obtained by merging clusters from both side of the graph, i.e. some of existing clus-
ters will be updated by some of the computed new ones. However, existing clusters
cannot be split by the PivotBiCluster algorithm even the corresponding correlations
with clusters from the newly extracted data elements reveal that these clusters are
not homogeneous. This has motivated us to develop our Split-Merge Evolutionary
Clustering algorithm that overcomes this disadvantage. Namely, our algorithm is
able to analyze the correlations between two clustering solutions and based on the
discovered patterns it treats the existing clusters in different ways. Thus some clus-
ters will be updated by merging with ones from newly constructed clustering while
others will be transformed by splitting their elements among several new clusters.

An interesting dynamic clustering algorithm which is also equipped with dy-
namic split-and-merge operations and which is dedicated to incremental clustering of
data streams is proposed by Lughofer in [10]. We have found a resemble between this
algorithm, entitled Dynamic split-and-merge algorithm, and our Split-Merge Evolu-
tionary Clustering. Hence, in this study the Split-Merge Evolutionary Clustering and
the PivotBiCluster are further evaluated and compared against the Dynamic split-and-
merge algorithm in two different experiment scenarios. Compared to the previous
paper [8], the bibliography and related work section have also been extended with
more recent works on the studied problem. We have also added a discussion on the
computational complexity of our Split-Merge Evolutionary Clustering algorithm.

The rest of the paper is organized as follows. Section 2 reviews related works.
Section 3 states the problem and briefly describes the PivotBiCluster and Dynamic
split-and-merge algorithms. In addition, it introduces the proposed Bipartite Split-
Merge Evolutionary Clustering technique. Section 4 gives an overview of the ex-
perimental setup. Section 5 discusses the results from the evaluation of the three
clustering algorithms. Section 6 is devoted to conclusions and future work.

53

2 Related Work
The model of incremental algorithms for data clustering is motivated by practical
applications where the demand sequence is unknown in advance and a hierarchical
clustering is required. Incremental clustering methods process one data element at a
time and maintain a good solution by either adding each new element to an existing
cluster or placing it in a new singleton cluster while two existing clusters are merged
into one [4]. Incremental algorithms also bear a resemblance to one-pass clustering
algorithms for data stream problems [6]. Several incremental clustering techniques
have been proposed in the past [11], [12], [13], [14]. Such algorithms need to main-
tain a substantial amount of information so that important details are not lost. For
example, the algorithm in [6] is implemented as a continuous version of k-means
algorithm which continues to maintain a number of cluster centers which change or
merge as necessary throughout the execution of the algorithm.

To qualify the type of cluster structure present in data, Balcan introduced the
notion of clusterability [15]. It requires that every element be closer to data in its
own cluster than to other points. In addition, Balcan showed that the clusterings that
adhere to this requirement are readily detected offline by classical batch algorithms.
On the other hand, it was proven by Ackerman [3] that no incremental method can
discover these partitions. Thus, batch algorithms are significantly stronger than in-
cremental methods in their ability to detect cluster structure. This is mainly due to
the fact that the latter methods consider incrementality by dealing with the problem
of model re-training over time and memory constrains, but they are not robust to the
model dynamics.

Dynamic clustering is also a form of incremental unsupervised learning. How-
ever, it considers not only incrementality of themethods to build the clusteringmodel,
but also self-adaptation of the built model. Lughofer has proposed an interesting
dynamic clustering algorithm which is equipped with dynamic split-and-merge op-
erations and which is also dedicated to incremental clustering of data streams [10].
In [16] similarly to the approach of Lughofer a set of splitting andmerging action con-
ditions are defined, where optional splitting and merging actions are only triggered
during the iterative process when the conditions are met. Wang et al. also propose a
split-merge-evolve algorithm for clustering data into k number of clusters [17]. This
algorithm has the ability to optimize the clustering result in scenarios where new data
samples may be added in to existing clusters. However, a k cluster output is always
provided by the algorithm, i.e. it is also not sensitive to the evolution of the data. In
general, incremental and one-pass stream clustering methods address the scalability
issues of the clustering problem, but they are not sensitive to the evolution of the data
because they assume that the clusters are to be computed over the entire data stream.

In [18] an adaptive clustering approach that can apply to re-cluster a set of previ-
ously clustered objects when the feature set characterizing the objects increases has
been proposed. The authors have developed adaptive extensions for k-means and hi-

54

erarchical agglomerative clustering algorithms. Further it has been shown how these
extensions can be used for adjusting a clustering, that was established by applying
the corresponding non-adaptive clustering algorithm before the feature set changed
[18]. Such adaptive clustering techniques could be necessary in some applied sce-
narios, e.g., in the expertise mining context when the recently gathered information
reveals that some of the known experts have expanded their competence. However,
in this case the clustering scenario will be different from one considered in [18], be-
cause usually the expert expertise profiles are not presented by fixed-length feature
vectors. Moreover, not all expert profiles will be affected by this expansion.

Gionis et al. proposed an approach to clustering that is based on the concept of
aggregation [19]. They are interested in a problem in which a number of different
clusterings are given on some data set of elements. The objective is to produce a
single clustering of the elements that agrees as much as possible with the given clus-
terings. Clustering aggregation provides a framework for dealing with a variety of
clustering problems. For instance, it can handle categorical or heterogeneous data by
producing a clustering on each available attribute and then aggregating the produced
clusterings into a single result. Another possibility is to combine the results of sev-
eral clustering algorithms applied on the same dataset etc. Clustering aggregation can
be thought as a more general model of multi-view clustering proposed in [20]. The
multi-view approach considers clustering problems in which the available attributes
can be split into two independent subsets. A clustering is produced on each subset
and then the two clusterings are combined into a single result. Consensus cluster-
ing algorithms deal with similar problems to those treated by clustering aggregation
techniques. Namely, such algorithms try to reconcile clustering information about
the same data set coming from different sources [21] or from different runs of the
same algorithm [22]. The both clustering techniques are not suited for our scenario,
since they are used to integrate a number of clustering results generated on one and
the same data set.

The idea for the proposed Split-Merge Evolutionary Clustering algorithm is in-
spired by the work of Xiang et al. [23]. They have proposed a split-merge framework
that can be tailored to different applications. The framework models two clusterings
as a bipartite graph which is decomposed into connected components, and each com-
ponent is further decomposed into subcomponents. Pairs of related subcomponents
are then taken into consideration in designing a clustering similarity measure within
the framework.

55

3 Methods and the Proposed Solution
3.1 Problem Description
Let us formalize the cluster updating problem we are interested in. We assume that
X is the available set of data points and each data point is represented by a vector
of attributes (features). In addition, the data points are partitioned into k groups,
i.e. C = {C1, C2, . . . , Ck} is an existing clustering solution of X and each Ci

(i = 1, 2, . . . , k) can be considered as a disjoint cluster. In addition, a new set
X ′ of recently collected data elements (instances) is created, i.e. X ∩ X ′ is an
empty set. Each data point in X ′ is again represented by a list of attributes and
C ′ = {C ′

1, C ′
2, . . . , C ′

k′} is a clustering solution of X ′. The objective is to produce a
single clustering of X ∪X ′ by combining C and C ′ in such a way that the obtained
clustering realistically reflects the current distribution in the domain under interest.

3.2 Pivot Bi-Clustering Algorithm
Two existing correlation clustering techniques are suitable for the considered con-
text: correlation clustering [24] and bipartite correlation clustering [9]. The latter
algorithm seems to be better aligned to our clustering scenario. In Bipartite Correla-
tion Clustering (BCC) a bipartite graph is given as input, and a set of disjoint clusters
covering the graph nodes is output. Clustersmay contain nodes from either side of the
graph, but they may possibly contain nodes from only one side. A cluster is thought
as a bi-clique connecting all the objects from its left and right counterparts. Conse-
quently, a final clustering is a union of bi-cliques covering the input node set. We
compare our Split-Merge Evolutionary Clustering algorithm described in Section 3.4
with PivotBiCluster realization of the BCC algorithm [9]. The PivotBiCluster algo-
rithm is implemented according to the original description given in [9].

Notice that in our considerations the input graph nodes of the PivotBiCluster al-
gorithm are clusters and in the final clustering some clusters are obtained by merging
clusters (nodes) from both sides of the graph, i.e. some of the existing clusters will
be updated by some of the computed new ones. However, existing clusters cannot be
split by the PivotBiCluster algorithm even when the corresponding correlations with
clusters from the new data elements reveal that these clusters are not homogeneous.

3.3 Dynamic Split-and-Merge Clustering Algorithm
The proposed algorithm, described in Section 3.4, is also compared with the Dynamic
split-and-merge clustering algorithm proposed by Lughofer in [10]. The Dynamic
split-and-merge algorithm of Lughofer can be used as an extension to any existing
incremental and evolutionary clustering algorithm provided it stores details regarding
cluster centers, spread, elements of a cluster [10]. Once the newly arriving data points
are assigned to existing clusters by applying some incremental clustering algorithm,

56

all the modified clusters are then examined in order to identify whether they need to
be split or merged. Optional splitting and merging actions are only triggered during
the iterative process if predefined action conditions are met. For example, a cluster
is merged with another existing cluster if both of them are homogeneous and the
clusters touch or overlap with each other. Whereas a cluster is split into two if the
quality criterion of the clustering solution after the split is better than that of before
it.

Although, the dynamic split-and-merge algorithm addresses the clustering dy-
namics, it is not very sensitive to concept drift phenomenon, because it assigns the
newly arriving data points to the existing clusters in an incremental way and then
improves the clustering solution by either splitting or merging the modified clusters.
In comparison our split-merge clustering technique provides the flexibility to com-
pute clusters on a new portion of data collected over a defined time period and to
update the existing clustering solution by the computed new one [8]. Such an updat-
ing clustering should better reflect the current characteristics of the data by being able
to examine clusters occurring in the considered time period and eventually capture
interesting trends in the area.

3.4 Bipartite Split-Merge Evolutionary Clustering Algorithm
In this paper, we propose an evolutionary clustering algorithm that overcomes the
abovementioned disadvantage of the two discussed state of the art algorithms. Namely,
our algorithm is able to analyze the correlations between two clustering solutions
C and C ′ and based on the discovered patterns it treats the existing clusters (C =
{C1, C2, . . . , Ck}) in different ways. Thus, some clusters will be updated bymerging
with ones from newly constructed clustering (C ′) while others will be transformed
by splitting their elements among several new clusters. One can find some similarity
between our idea and an interactive clustering model proposed in [25]. In this model,
the algorithm starts with some initial clustering of data and the user may request a
certain cluster to be split if it is overclustered (intersects two or more clusters in the
target clustering). The user may also request to merge two given clusters if they are
underclustered (both intersect the same target cluster).

As it was already mentioned in Section 2 our evolutionary clustering algorithm
is inspired by a split-merge framework proposed by Xiang et al. in [23]. By mod-
eling the intrinsic relation between two clusterings as a bipartite graph, they have
designed a split-merge framework that can be used to obtain similarity measures to
compare clusterings on different data sets. The problem addressed in this article is
different from the one considered by Xiang et al. [23]. Namely, we concern with the
development of split-merge framework that can be used to adjust the existing cluster-
ing solution to newly arrived data. Our framework also models two clusterings (the
existing and the newly constructed one) as a bipartite graph which is decomposed

57

Figure 1: Split-Merge Framework: a) a bi-clique that contains underclustered nodes (C1 and C2 intersect C′
1);

b) a bi-clique that contains an overclustered node (C3 intersects C′
2, C′

3 and C′
4); c) a bi-clique that has to be

decomposed into subcomponents in the second step of the algorithm. It is transformed into a tripartite graph
that has split (left) and merge (right) subcomponents.

into connected components (bi-cliques) (see Fig. 1 (a), (b) and (c)). Each component
is further analysed and if it is necessary it is decomposed into subcomponents (see
Fig. 1 (c)). The subcomponents are then taken into consideration in producing the
final clustering solution. For example, if an existing cluster is overclustered (Fig. 1
(b)), i.e. it intersects two or more clusters in the new clustering, it is split between
those. If several existing clusters intersect the same new cluster, i.e. they are under-
clustered (Fig. 1 (a)), they are merged with that cluster. Notice that in comparison
with the dynamic split-and-merge algorithm of Lughofer [10], the splitting and merg-
ing operations of our algorithm can be conducted on more than two clusters.

Let us formally describe the proposed Split-Merge Evolutionary Clustering al-
gorithm. The input bipartite graph is G = (C, C ′, E), where C and C ′ are sets of
clusters of left and right nodes andE is a subset ofC×C ′ that represents correlations
between the nodes of two sets. The two main steps of the algorithm are as follows:

1. At the first step, all bi-cliques ofG are found. Then we consider and treat three
different scenarios:

(i) If a bi-clique is an unreachable node it is made a singleton in the final
clustering solution.

(ii) If a bi-clique connects a node from the left side of G with several nodes
from C ′ the elements of this node are split among the corresponding
nodes from C ′ (see Fig. 1 (b)).

58

(iii) In the opposite case, i.e., when we have a bi-clique that connects a node
from the right side of G with several nodes from left those nodes have to
be merged with that node (cluster) (see Fig. 1 (a)).

All clustered nodes are removed from the graph.

2. At the second step, the remained bi-cliques are decomposed into split/merge
subcomponents. Each bi-clique, which is a bipartite graph, is transformed
into a tripartite graph constructed by two (split and merge) bipartite graphs.
Suppose Gi = (Ci, C ′

i, Ei) is the considered bi-clique. Then the correspond-
ing tripartite graph is built by the following two bipartite graphs: GiL =
(Ci, Ei, EiL) and GiR = (Ei, C ′

i, EiR), where Ci, C ′
i and Ei are ones from

Gi, EiL is a subset of Ci × Ei that represents correlations between the nodes
of Ci and Ei, and EiR is a subset of Ei×C ′

i representing correlations between
the nodes ofEi andC ′

i (see Fig. 1 (c)). For example, ci ∈ Ci will be correlated
with all pairs (cj , c′

k) ∈ Ei such that ci ≡ cj , and c′
i ∈ C ′

i will be correlated
with all pairs (cj , c′

k) ∈ Ei such that c′
i ≡ c′

k. Then splitting and merging
sub-steps are sequentially conducted:

(i) First all overclustered nodes of GiL are split and new temporary clusters
are formed as a result. This can be implemented, e.g., by calculating the
distance between each data point of the overclustered node from C and
the centroids of its adjacent nodes (cluster) from C ′. Then the data point
in question is assigned to the closest cluster.

(ii) Then we perform the correspondingmerging for all underclustered nodes
in GiR.

For example, in Fig. 1 (c) cluster C5 will first be split among clusters C ′
5, C ′

6
and C ′

7, i.e. three new clusters, denoted by (C5, C ′
5), (C5, C ′

6) and (C5, C ′
7),

will be obtained. Then at the next step of the algorithm clusters (C5, C ′
5) and

(C6, C ′
5) will be merged together.

The pseudocode of the proposed Split-Merge Evolutionary Clustering algorithm
is given in Algorithm I.1. In addition, the algorithm is illustrated with an example
in Fig. 2. The clustering solution generated by the Split-Merge Clustering is com-
pared to one produced by the PivotBiCluster. It is interesting to notice that the two
algorithms will produce very different clustering solutions on the same input graph.
For example, the Split-Merge Clustering will generate a 4-cluster solution while one
obtained by the PivotBiCluster will have only 2 clusters. The latter number is quite
low taking into account the number of clusters in the two input clusterings. More-
over, as it was mentioned in the previous section the PivotBiCluster algorithm cannot
produce a clustering solution in which existing clusters are split among new clusters.

59

Algorithm I.1 Split-Merge Evolutionary Clustering Algorithm
1: function SPLIT-MERGE(G = (C, C′, E))
2: for all nodes c ∈ C ∪ C′ do (*First step*)
3: if c is an unreachable node then
4: Turn c into a singleton and remove it from G (*First step (i)*)
5: end if
6: end for
7: for all nodes c ∈ C ∪ C′ do
8: if c1 is the only node from C that takes part in a bi-clique connecting it with one or several nodes from

C′ then
9: Split c1 among the corresponding nodes from C′ (*First step (ii)*)
10: Remove the clustered nodes from G
11: end if
12: end for
13: for all nodes c ∈ C ∪ C′ do
14: if c′

1 is the only node from C′ that takes part in a bi-clique connecting it with one or several nodes
from C then

15: Merge c′
1 with the corresponding nodes from C (*First step (iii)*)

16: Remove the clustered nodes from G
17: end if
18: end for
19: for all nodes c ∈ C do (*Second step*)
20: Split c1 among its adjacent nodes from C′ and form new temporary clusters (*Second step (i)*)
21: end for
22: for all nodes c′ ∈ C′ do
23: Merge c′

1 with its adjacent nodes from the built set of temporary clusters (*Second step (ii)*)
24: Remove the clustered nodes from G
25: end for
26: return all connected components (bi-cliques) as clusters of X ∪ X′

27: end function

We now discuss the computational complexity of the Split-Merge Evolutionary
Clustering. Suppose that n is the number of instances in the existing data set and
n′ (n′ < n) is the number of instances in the new data set. In addition, we assume
that the instances of the existing data set have already been grouped in k (k << n)
categories. Initially, the new data elements have to be clustered into k′ (k′ << n′)
clusters. The computational complexity of this part depends on the used clustering
algorithm. It will be O(n′k′mi) in case of k-means clustering algorithm [26], where
m and i are the dimensionality of the learning problem and the number of iterations,
respectively. According to Gan et al. [27], k-means usually converges quickly, i.e.
the number of iterations is usually low and the algorithm complexity can be reduced
toO(n′k′m). In order to build the bipartite graph we calculate the similarity between
the centroids of each pair of clusters belonging to C × C ′. Any pair of clusters
which centroids’ similarity is above a given threshold are considered connected by an
edge. Hence, the computational complexity of building the bipartite graph is equal to
O(kk′). We further focus our discussion on the computational complexity of themain
steps of our algorithm, given in Algorithm I.1. The first part of the algorithm (steps
2 to 18) requires execution time that is proportional to k + k′. The computational
complexity of the remainder part of the algorithm (from step 19 downwards) depends
on the average size of clusters that have to be split. Suppose that l (l << n) is the
average number of instances in those clusters. Then the computational complexity
of this part can be approximated to O((k + k′)l). Finally, the total computational

60

complexity of the Split-Merge Evolutionary Clustering isO(n′k′m+kk′ +(k+k′)+
(k +k′)l) and n′ >> (k +k′), i.e. it can be simplified toO(n′k′m+kk′ +(k +k′)l).
In addition, l >> k′, i.e. we can further simplify toO(n′k′m+(k +k′)l) and finally
reduce to O(n′(k + k′)m), as n′ >> l. The latter expression is very close to the
computational complexity of the Dynamic split-and-merge algorithm evaluated to
O(n′km) in [10]. The complexity of PivotBiCluster, commented in [9], cannot be
directly compared to the complexity of our algorithm, since the former algorithm is
not originally defined to work with clusters.

Figure 2: Clustering solutions generated by Split-Merge Clustering (left) and PivotBiCluster (right), respectively:
a) the input bipartite graph; b) temporary clusters formedby Split-MergeClustering after splitting overclustered
nodes from the left set (above) ({C1, C2, C3 }) of the graph among corresponding nodes from the right set
(below) ({C′

1, C′
2, C′

3, C′
4}); c) the final clustering solution produced by Split-Merge Clustering, d) the final

clustering solution produced by PivotBiCluster.

4 Experimental Setup
In [8], we have evaluated the Split-Merge Evolutionary Clustering and PivotBiClus-
ter algorithms in two different case studies. We have compared the performance of
the algorithms in expertise retrieval domain by applying them on data extracted from
PubMed repository. In addition, a case study in profiling patients in healthcare do-
main has been conducted. The Split-Merge Clustering algorithm has shown better
performance than the PivotBiCluster in most of the studied experimental scenarios.

In the current work we further study and compare the two clustering algorithms
with the Dynamic split-and-merge algorithm, proposed in [10], on four different data
sets (explained in the following section) under two different experiment scenarios

61

(see Section 4.3).

4.1 Data
Anthropometric data set: This dataset is publicly available and published in
[28]. The data contains 400 undergraduate students aged between 16 and 63
years old, where a 56.3% are women. The following features describe the data:
age, obesity, BMI, WC, HC, WHR, Systolic Blood Pressure (SBP), Diastolic
Blood Pressure (DBP), preh for women and hyper for men, where the preh and
hyper are classification labels that show what kind of blood pressure the indi-
vidual has (e.g., regular or hyper). According to the results published in [29]
people can be grouped into six clusters depending on their blood pressure. This
grouping is considered as the ground truth to benchmark the results generated
by the three studied clustering algorithms.

Yeast data set: The yeast data set obtained from the UCI machine learning
repository is used to predict the cellular localization site of protein [30]. Data
set consists of 1484 instances of data with 8 attributes, divided into 10 classes.

Wine quality data set: The wine quality-data set obtained from the UCI ma-
chine learning repository includes two data sets, related to red and white vinho
verde wine samples, from the north of Portugal. The goal is to model wine
quality based on physicochemical tests [31]. These data sets are labelled and
can be used for classification tasks.

Cover-type data set: The cover-type data set obtained from the UCI machine
learning repository is created to predict the forest cover type [32]. The data
set contains cartographic values of a forest. It is a labeled data set primarily
designed to validate classification algorithms. Data set consists of 581012 in-
stances of data with 54 attributes, divided into 7 classes.

Notice that anthropometric data set has been used in [8] for our case study in
healthcare domain, while cover-type data set has been used by Lughofer in [10]. The
selected data sets are labelled and their characteristics are summarized in Table 1.
One of the advantages of using labeled data is that the available class labels could be
used as a benchmark while validating the obtained clustering solution.

Table 1: Characteristics of the used test data sets

data sets #Instances #Attributes #Clusters
antropometric 400 9 6
yeast 1484 8 10
wine quality 6498 12 7
cover-type 581,012 54 7

62

4.2 Metrics
The data mining literature provides a range of different cluster validation measures,
which are broadly divided into two major categories: external and internal [26]. Ex-
ternal validation measures have the benefit of providing an independent assessment
of clustering quality, since they validate a clustering result by comparing it to a given
external standard. However, an external standard is rarely available. Internal valida-
tion techniques, on the other hand, avoid the need for using such additional knowl-
edge, but have the alternative problem to base their validation on the same informa-
tion used to derive the clusters themselves. Furthermore, internal measures can be
split with respect to the specific clustering property they reflect and assess to find an
optimal clustering scheme: compactness, separation, connectedness, and stability of
the cluster partitions.

External validation measures can be two types: unary and binary [33]. Unary
external evaluation measures take a single clustering result as the input, and compare
it with a known set of class labels to assess the degree of consensus between the
two. Comprehensive measures like the F-measure provide a general way to evaluate
this [34]. In addition to unary measures, the data-mining literature also provides a
number of indices, which assess the consensus between a produced partitioning and
the existing one based on the contingency table of the pairwise assignment of data
items. Most of these indices are symmetric, and are therefore equally well-suited for
the use as binary measures, i.e., for assessing the similarity of two different clustering
results.

In this work, we have implemented three different validation measures for esti-
mating the quality of clusters, produced by the three studied clustering algorithms:
F-measure, Jaccard Index and Silhouette Index.

We have used the F-measure as an external (unary) validation metric [35]. The
F-measure is the harmonic mean of the precision and recall values for each clus-
ter. Let us consider two clustering solutions C = {C1, C2, . . . , Ck} and C ′ =
{C ′

1, C ′
2, . . . , C ′

l} of the same data set. The first solution C is a known partition
of the considered data set while the second one C ′ is a partition generated by the
applied clustering algorithm. The F-measure for a cluster C ′

j is then given as

F (C ′
j) =

2
∣∣∣Ci

⋂
C ′

j

∣∣∣
|Ci|+

∣∣∣C ′
j

∣∣∣ ,
where Ci is the cluster that contains the maximum number of objects from C ′

j . The
overall F-measure for clustering solution C ′ is defined as the mean of cluster-wise
F-measure values, i.e.

F (C ′) = 1
l

l∑
j=1

Fj . (I.1)

For a perfect clustering, when l = k, the maximum value of the F-measure is 1.

63

In addition, we have applied Jaccard Index (Jaccard similarity coefficient) [36] to
evaluate the stability of the clustering algorithms. Given a pair of clustering solutions
of the same data set, C and C ′, we define a as the number of data point pairs that
belong to the same cluster in C as well as in C ′. Let b be the number of data point
pairs that belong to the same cluster in C but not in C ′. Further, c is defined to be
the number of data point pairs that belong to the same cluster in C ′ but not in C. The
Jaccard Index (JI) between C and C ′ is then defined as:

J(C, C ′) = a

a + b + c
. (I.2)

The Jaccard Index ranges from 0 to 1, where a higher value indicates a higher similar-
ity between cluster solutions. Jaccard Index has been used to measure the similarity
between the generated clustering solutions and the corresponding benchmark parti-
tionings of the used test data sets.

Furthermore, Silhouette Index (SI) has been applied as an internal measure to
assess compactness and separation properties of the generated clustering solutions
[37]. It is a cluster validation index that can be used to judge the quality of any
clustering solution C. Suppose ai represents the average distance of object i from
the other objects of its assigned cluster, and bi represents the minimum of the average
distances of object i from objects of the other clusters. The Silhouette Index for
clustering solution C of m objects is defined as:

s(C) = 1
m

m∑
i=1

(bi − ai)
max{ai, bi}

. (I.3)

The values of Silhouette Index vary from -1 to 1 and higher values indicate better
clustering results.

4.3 Experiments
We have studied two different experiment scenarios. In the first scenario we compare
the three clustering algorithms on cover-type and wine quality data sets described in
Section 4.1. Each data set is used to generated 10 test data set couples by randomly
separating the data points in two sets. One set (containing 70% of data) of each
couple presents the available data set and the other one (30% of data) is the set of
newly collected data objects. In that way 10 test clustering couples are created for
each data set.

In the second scenario we examine whether the three studied algorithms are sen-
sitive to the size of the new portion of data. For this purpose we use the other two
data sets (anthropometric and yeast) described in Section 4.1. For each data set we
produce 4 times 10 test data set couples by randomly separating its data points in two
sets in a ratio 50/50, 60/40, 70/30 and 80/20, respectively.

64

4.4 Implementation and Availability
The three studied clustering algorithms (Split-Merge Evolutionary Clustering, Piv-
otBiCluster and Dynamic split-and-merge) are implemented in Python. We have
selected the MiniBatchKMeans algorithm available in scikit-learn library 1 as an in-
cremental clustering used in the implementation of the Dynamic split-and-merge. F-
measure, Jaccard Index and Silhouette Index (see Section 4.2) used to validate the
clustering solutions generated in our experiments are also implemented in scikit-learn
library.

Notice that in the experiments conducted on cover-type data set we have used
only the 14 non-binary attributes from all 54 attributes of this data. We have not
considered the soil type data, since they are very sparse. In addition, we have used a
sample set of 50 000 instances.

Supplementary information is available at GitLab 2.

5 Results and Discussion
The results produced by the three studied clustering algorithms in the first experiment
scenario are given in Table 2 and Table 3. The performance of the algorithms is
studied with respect to three different cluster validation measures: Silhouette Index
(SI), F-measure and Jaccard Index. The results from the evaluation of the algorithms
on cover-type data set are given in Table 2. As one can see, the PivotBiCluster and
Split-Merge Clustering have generated significantly higher F-measure scores than
the Dynamic split-and-merge. However, the latter algorithm slightly outperforms the
other two with respect to SI. Notice that the PivotBiCluster behaviors significantly
better then the other two algorithms with respect to F-measure and Jaccard Index. In
general, the PivotBiCluster can be considered as the best performing algorithm on
cover-type data set. It is further interesting to discuss that although, the incremental
algorithm (MiniBatchKMeans) used by the Dynamic split-and-merge has modified
all the 7 initial clusters in each test data couple no split and merge actions have been
performed. For example, if we compare it with the other two algorithms on one and
the same data set couple the PivotBiCluster has performed 2 merges while the Split-
Merge Clustering has done 4 merges and 7 splits. In addition, the PivotBiCluster has
generated a cluster solution with 5 cluster while the clustering solution produced by
the Split-Merge Clustering has 7 cluster. This supports our discussion in Section 3.3
that the Dynamic split-and-merge algorithm is not very sensitive to concept drift
scenarios compared to the other two algorithms, which update the existing clustering
solution by considering the clustering extracted from the new portion of data.

Table 3 contains the results obtained from the evaluation of the three clustering

1scikit-learn is a Python library for data mining and data analysis.
2https://gitlab.com/machine_learning_vm/clustering_techniques

65

https://gitlab.com/machine_learning_vm/clustering_techniques

Table 2: Experiment 1: Average cluster validation metrics scores generated on the clustering solutions of the
10 cover-type test data set couples.

metrics PivotBiCluster Split-Merge Clustering Dynamic split-and-merge
SI 0.194 0.034 0.196
F-measure 0.903 0.759 0.376
Jaccard Index 0.231 0.021 0.161

algorithms on wine quality data set with respect to the three used cluster validation
criteria. The PivotBiCluster is again the best performing algorithm according to the
results produced by F-measure and Jaccard Index. However, this is not supported
by the generated SI scores. Namely, the Dynamic split-and-merge has the highest
average SI score. However, it is outperformed by the Split-Merge Clustering with
respect to Jaccard Index and F-measure. It is also interesting to observe that the
number of clusters of the clustering solutions generated on the wine quality test data
set couples varies from 5 to 8 for the PivotBiCluster, and between 1 and 7 (seven
data set couples have generated clustering solutions with 4 or less clusters) for the
Dynamic split-and-merge. This might be the main reason for the higher SI scores
generated by the Dynamic split-and-merge algorithm, since the SI score generated
on the benchmark clustering of wine quality data set is -0.06. In the case of the Split-
Merge Clustering the data points are grouped into 7 or 8 clusters, i.e. much closer
to the benchmark clustering of wine quality data set. The latter one has 7 clusters
(see Table 1). This trend has been noticed also for the other three data sets (see the
discussion below about the results generated on antropometric data set).

Table 3: Experiment 1: Average cluster validation metrics scores generated on the clustering solutions of the
10 wine quality test data set couples.

metrics PivotBiCluster Split-Merge Clustering Dynamic split-and-merge
SI -0.111 -0.129 0.143
F-measure 0.676 0.461 0.311
Jaccard Index 0.269 0.143 0.137

The results obtained in the second experiment scenario are given in Tables 4, 5
and 6. For example, Table 4 presents the evaluations of the clustering solutions gen-
erated by the three algorithms on antropometric and yeast data sets with respect to
F-measure. The obtained results support the better performance of PivotBiCluster
and Split-Merge Clustering compared to the Dynamic split-and-merge. The Pivot-
BiCluster even slightly outperforms the Split-Merge Clustering with respect to this
evaluation criterion (F-measure).

In line with the results obtained on cover-type and wine quality data sets the Dy-
namic split-and-merge outperforms the other two algorithms with respect to the SI
evaluation criteria (see Table 5). As it was already discussed above we believe that
this is due to the fact that it generates the clustering solutions with less number of
clusters compared to the other two algorithms. For example, we have compared the
three algorithms on the ten 60/40 test couples of antropometric data set. The num-
ber of clusters of the clustering solutions generated by the Dynamic split-and-merge

66

6 4 2 0 2
SBP

6

4

2

0

2

DB
P

(a) PivotBiCluster: 4 clusters,
SI = - 0.23, F-measure = 0.544

6 4 2 0 2
SBP

6

4

2

0

2

DB
P

(b) Split-Merge Clustering: 5 clusters,
SI = - 0.05, F-measure = 0.594

6 4 2 0 2
SBP

6

4

2

0

2

DB
P

(c) Dynamic split-and-merge: 3 clusters,
SI = 0.24, F-measure = 0.369

25 50 75 100 125 150 175
SBP

20

40

60

80

100

120

DB
P

(d) Benchmark clustering: 6 clusters,
SI = 0.017

Figure 3: Clustering solutions generated by the three studied clustering algorithms on an antropometric 70/30
test data set couple versus the benchmark clustering.

Table 4: Experiment 2: Average F-measure scores generated on the clustering solutions of the 4 × 10 antropo-
metric data set couples (above) and 4 × 10 yeast test data set couples (below).

antropometric 50/50 60/40 70/30 80/20
PivotBiCluster 0.677 0.624 0.544 0.676
Split-Merge Clustering 0.546 0.504 0.519 0.481
Dynamic split-and-merge 0.374 0.389 0.442 0.482

yeast
PivotBiCluster 0.700 0.710 0.821 0.858
Split-Merge Clustering 0.576 0.522 0.496 0.489
Dynamic split-and-merge 0.419 0.423 0.426 0.410

varies from 1 to 3, in the case of the PivotBiCluster all ten clustering solutions have
4 clusters, while the Split-Merge Clustering has grouped the data points into 6, 7 or
8 clusters. Evidently, the three clustering algorithms have generated clustering solu-
tions with very different number of clusters. However, the clustering solutions of the
Split-Merge Clustering are most close to the benchmark clustering of antropometric
data set (Section 4.1), which has 6 clusters. This trend has been noticed also for the

67

other three data sets (see the discussion on wine quality data set). Figure 3 further il-
lustrates this by plotting clustering solutions generated by the three algorithms on an
antropometric 70/30 test data set couple. The corresponding benchmark clustering
and its SI score are given in Figure 3d. As one can see the three algorithms have gen-
erated clustering solutions that have different number of clusters. In addition, they
have produced different SI and F-measure scores. The clustering solutions produced
by the Split-Merge Clustering (Figure 3b) and Dynamic split-and-merge (Figure 3c)
seem close to each other and they are visually more similar to the benchmark clus-
tering than the PivotBiCluster solution (Figure 3a). This is also supported by the
calculated SI scores. We further observe that the PivotBiCluster is the worst per-
forming algorithm according to SI on antropometric data set while its performance
on yeast data set is almost comparable to that of the Dynamic split-and-merge algo-
rithm. It is interesting to notice that the performance of the Split-Merge Clustering is
influenced by the size of the new data set, while this is not clearly demonstrated by
the other two algorithms, even in some experiments they have been improving their
performance.

Table 5: Experiment 2: Average SI scores generated on the clustering solutions of the 4 × 10 antropometric
test data set couples (above) and 4 × 10 yeast test data set couples (below).

antropometric 50/50 60/40 70/30 80/20
PivotBiCluster -0.344 -0.327 -0.231 -0.178
Split-Merge Clustering -0.212 -0.189 -0.108 -0.096
Dynamic split-and-merge 0.2 0.238 0.188 0.170

yeast
PivotBiCluster 0.142 0.068 0.044 0.076
Split-Merge Clustering -0.061 -0.061 -0.048 -0.036
Dynamic split-and-merge 0.164 0.157 0.158 0.150

The evaluations of the clustering solutions produced by the three algorithms on
antropometric and yeast data sets with respect to Jaccard Index are given in Table 6.
The Dynamic split-and-merge is the best performing algorithm with respect to this
evaluation criterion. However, the generated values are very close to ones of the Split-
Merge Clustering, particularly for the 70/30 data test couples. It is also interesting
to notice that in contradiction to the behaviour of PivotBiCluster on cover-type and
wine quality data sets, it is the worst performing algorithm under Jaccard Index on
antropometric and yeast data sets.

Table 6: Experiment 2: Average Jaccard Index scores generated on the clustering solutions of the 4 × 10
antropometric data set couples (above) and 4 × 10 yeast test data set couples (below).

antropometric 50/50 60/40 70/30 80/20
PivotBiCluster 0.021 0.015 0.068 0.058
Split-Merge Clustering 0.077 0.164 0.107 0.074
Dynamic split-and-merge 0.156 0.199 0.119 0.094

yeast
PivotBiCluster 0.014 0.022 0.034 0.020
Split-Merge Clustering 0.086 0.089 0.090 0.086
Dynamic split-and-merge 0.099 0.136 0.105 0.118

68

In [38], Luxburg et al. argue that clustering should not be treated as an applica-
tion independent mathematical problem, but should always be studied in the context
of its end-use. The authors further discuss that the cluster evaluation methods can
produce contradictory results and often do not serve their purpose. The main point
of the authors is that clustering algorithms cannot be evaluated in a problem indepen-
dent way, i.e. the known cluster validation measures cannot be used to evaluate the
usefulness of the clustering. However, it is still not clear how we can measure the
usefulness of a newly developed clustering algorithm.

The results obtained in this study support the above mentioned arguments of
Luxburg et al. [38]. Namely, the conducted experiments have not clearly pointed
out an algorithm that we can consider and recommend as the best performing one
compared to the other two algorithms with respect to the used cluster validation
criteria. For example, SI has favoured the Dynamic split-and-merge algorithm in
most of the performed experiments. On the other hand, the PivotBiCluster and Split-
Merge Evolutionary Clustering have generated higher values for F-measure than the
Dynamic split-and-merge algorithm. Moreover, the Split-Merge Clustering and Dy-
namic split-and-merge algorithms have performed better compared to the PivotBi-
Cluster algorithm with respect to Jaccard Index on two of the used data sets. How-
ever, on the other two data sets the PivotBiCluster algorithm is the best performing
one under this evaluation criterion. The PivotBiCluster has slightly outperformed the
Split-Merge Evolutionary Clustering with respect to F-measure. However, the Split-
Merge Evolutionary Clustering algorithm has shown to be more robust than the other
two algoritms in producing clustering solutions with cluster number close to that of
the benchmark clustering solutions. Evidently, the three clustering algorithms need
to be further studied and validated on different applied scenarios in order to get bet-
ter understanding of their specific characteristics, behaviour and further evaluate the
usefulness.

6 Conclusion and Future Work
In this work, we have studied and evaluated a novel evolutionary clustering tech-
nique, entitled Split-Merge (Evolutionary) Clustering. The proposed algorithm is
supposed to be more robust to concept drift scenarios by providing the flexibility
to update the existing clustering solution by considering the clusters derived from
a new portion of data. The proposed technique has been compared with other two
state of the art clustering algorithms: PivotBiCluster and Dynamic split-and-merge.
The three algorithms have been evaluated and demonstrated in two experiment sce-
narios on four different data sets using three cluster validation indices: Silhouette
Index (SI), F-measure and Jaccard Index. The obtained results have not clearly prior-
itized any of the three studied clustering algorithms. The Dynamic split-and-merge
algorithm has been favoured by SI in the most of conducted experiments. The Pivot-

69

BiCluster and Split-Merge Evolutionary Clustering have produced higher F-measure
scores than the Dynamic split-and-merge algorithm in all the experiments. The Piv-
otBiCluster algorithm has demonstrated a slightly better performance than the Split-
Merge Evolutionary Clustering under this evaluation criterion. Jaccard Index has
not clearly pointed out an algorithm that can be considered as the best performing
one. The Split-Merge Evolutionary Clustering algorithm has shown to be more ro-
bust to producing clustering solutions that have number of clusters close to that of
the benchmark clustering solutions.

Our future plans are to pursue further study and evaluation of our Split-Merge
Evolutionary Clustering technique by comparing it with the other two state of the art
algorithms on richer data sets and in case studies from different application domains.
For example, we are currently interested in evaluating the algorithms on household
electricity consumption data. We study whether they can be applied for modelling
and monitoring evolving user behavior.

In a long-term perspective, we are interested in building upon the proposed split-
merge evolutionary algorithm and develop measures for monitoring clusters evolu-
tion and mining changes. This might be treated as time-series forecasting problem
where we need to forecast the changes in the clustering solution that might occur.
Other interesting future direction is to use the proposed split-merge framework for
developing a continual and shared learning technique that enable to learn from mul-
tiple data sources by continual updating and evolving of the model.

References
[1] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer. “MOA: massive online

analysis”. In: Journal Machine Learning Research 11 (2010), pp. 1601–1604.
[2] A. Bouchachia. “Evolving clustering: an asset for evolving systems”. In: IEEE

SMC Newsletters 36 (2011).
[3] M. Ackerman and S. Dasgupta. “Incremental Clustering: The Case for Extra

Clusters”. In: Proceedings of the 27th International Conference on Neural In-
formation Processing Systems - Volume 1. NIPS’14. 2014, pp. 307–315.

[4] M. Charikar, C. Chekuri, T. Feder, and R. Motwani. “Incremental Clustering
and Dynamic Information Retrieval”. In: Proc. of the 29th Annual ACM Sym-
posium on Theory of Computing. STOC ’97. 1997, pp. 626–635.

[5] M. Zopf and et al. “Sequential Clustering and Contextual Importance Mea-
sures for Incremental Update Summarization”. In: Proc. of COLING’2016.
2016, pp. 1071–1082.

70

[6] L. O’Callaghan, N.Mishra, A.Meyerson, S. Guha, andR.Motwani. “Streaming-
Data Algorithms for High-Quality Clustering”. In: Proceedings of IEEE Inter-
national Conference on Data Engineering. 2001, pp. 685–694.

[7] D. Dell’Aglio, E. D. Valle, F. van Harmelen, and A. Bernstein. “Stream rea-
soning: A survey and outlook”. In: Data Science 1 (1-2 2017), pp. 59–83.

[8] V. Boeva,M.Angelova, and E. Tsiporkova. “A Split-Merge Evolutionary Clus-
tering Algorithm”. In: Proceedings of ICAART 2019. 2019, pp. 337–346.

[9] N. Ailon, N. Avigdor-Elgrabli, E. Liberty, and A. van Zuylen. “Improved Ap-
proximation Algorithms for Bipartite Correlation Clustering”. In: Algorithms -
ESA 2011 - 19th Annual European Symposium, Saarbrücken, Germany, Septem-
ber 5-9, 2011. Proceedings. 2011, pp. 25–36.

[10] E. Lughofer. “A dynamic split-and-merge approach for evolving cluster mod-
els”. In: Evolving Systems 3.3 (Sept. 2012), pp. 135–151.

[11] P. Angelov. “An approach for fuzzy rule-base adaptation using on-line cluster-
ing”. In: International Journal of Approximate Reasoning 35 (3 2004), pp. 275–
289.

[12] A. Bouchachia and C. Vanaret. “Incremental learning based on growing gaus-
sian mixture models”. In: Proceedings of 10th international conference on
machine learning and applications (ICMLA 2011), Honululu, Haweii. 2011.

[13] D. Dovzan and I. Skrjanc. “Recursive clustering based on a Gustafson-Kessel
algorithm”. In: Evolving Systems 2 (1 2011), pp. 15–24.

[14] F. Farnstrom, J. Lewis, and C. Elkan. “Scalability for clustering algorithms
revisited”. In: SIGKDD Explorations, London. Vol. 2. 2000, pp. 51–57.

[15] M.-F. Balcan, A. Blum, and S. Vempala. “A Discriminative Framework for
Clustering via Similarity Functions”. In: Proceedings of the Fortieth Annual
ACM Symposium on Theory of Computing. STOC ’08. 2008, pp. 671–680.

[16] R. Fa and A. K. Nandi. “Smart: Novel self splitting-merging clustering al-
gorithm”. In: European Signal Processing Conference, Bucharest, Romania,
August, 27-32. IEEE, 2012.

[17] M. Wang, V. Huang, and A.-M. C. Bosneag. “A Novel Split-Merge-Evolve
k Clustering Algorithm”. In: IEEE 4th International Conference on Big Data
Computing Service and Applications (BigDataService), Bamberg, Germany,
March 26-29. 2018.

[18] A. Campan and G. Serban. “Adaptive Clustering Algorithms”. In: Conference
of the Canadian Society for Computational Studies of Intelligence, Canadian
AI 2006: Advances in Artificial Intelligence. 2006, pp. 407–418.

[19] A. Gionis, H. Mannila, and P. Tsaparas. “Clustering Aggregation”. In: ACM
Transaction of Knowledge Discovery Data 1.1 (2007).

71

[20] S. Bickel and T. Scheffer. “Multi-View Clustering”. In: Proceedings of the
Fourth IEEE International Conference on Data Mining. ICDM ’04. 2004,
pp. 19–26.

[21] V. Boeva, E. Tsiporkova, and E. Kostadinova. “Analysis of Multiple DNAMi-
croarrayDatasets”. In: SpringerHandbook of Bio-/Neuroinformatics. Springer
Berlin Heidelberg, 2014, pp. 223–234.

[22] A. Goder and V. Filkov. “Consensus Clustering Algorithms: Comparison and
Refinement”. In: ALENEX. 2008, pp. 109–234.

[23] Q. Xiang, Q. Mao, K. M. A. Chai, H. L. Chieu, I. W. Tsang, and Z. Zhao. “A
Split-Merge Framework for Comparing Clusterings”. In: ICML. 2012.

[24] N. Bansal, A. Blum, and S. Chawla. “Correlation Clustering”. In: Machine
Learning 56.1-3 (2004), pp. 89–113.

[25] P. Awasthi, M. F. Balcan, and K. Voevodski. “Local algorithms for interactive
clustering”. In: Journal of Machine Learning Research 18.3 (2017), pp. 1–35.

[26] A. K. Jain and R. C. Dubes. Algorithms for clustering data. English. Engle-
wood Cliffs, NJ: Prentice Hall, 1988, pp. xiv + 320. ISBN: 0-13-022278-X.

[27] G. Gan, C. Ma, and J. Wu. Data clustering: theory, algorithms, and appli-
cations. (Asa-Siam Series on Statistics and Applied Probability). Society for
Industrial & Applied Mathematics, USA, 2007.

[28] H. F. Golino, L. S. de Brito Amaral, S. F. P. Duarte, and et al. “Predicting
Increased Blood Pressure Using Machine Learning”. In: Journal of Obesity
2014 (2014).

[29] Y. Li, X. Feng, M. Zhang, M. Zhou, N. Wang, and L. Wangb. “Clustering
of cardiovascular behavioral risk factors and blood pressure among people
diagnosed with hypertension: a nationally representative survey in China”. In:
Sci Rep. 6 (2016).

[30] K. Nakai and M. Kanehisa. “Expert Sytem for Predicting Protein Localization
Sites in Gram-Negative Bacteria”. In: PROTEINS: Structure, Function, and
Genetics 11 (1991), pp. 95–110.

[31] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reisa. “Modeling wine
preferences by data mining from physicochemical properties”. In: Decision
Support Systems 47.4 (2009), pp. 547–553.

[32] J. A. Blackard, D. J. Dean, and C.W.Anderson.UCIMachine Learning Repos-
itory. 1998. URL: http://archive.ics.uci.edu/ml.

[33] J. Handl, J. Knowles, and D. Kell. “Computational cluster validation in post-
genomic data analysis”. In: Bioinformatics 21.15 (2005), pp. 3201–3212.

[34] C. van Rijsbergen. Information Retrieval. Butterworth-Heinemann Newton.
MA, USA, 1979.

72

http://archive.ics.uci.edu/ml

[35] B. Larsen and C. Aone. “Fast and Effective Text Mining Using Linear-time
Document Clustering”. In: Proc. of the 5th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. KDD’99. ACM, 1999,
pp. 16–22.

[36] P. Jaccard. “The distribution of flora in the alpine zone”. In: New Phytologist
11 (1912), pp. 37–50.

[37] P. J. Rousseeuw. “Silhouettes: A graphical aid to the interpretation and vali-
dation of cluster analysis”. In: Journal of Computational and Applied Mathe-
matics 20 (1987), pp. 53–65.

[38] U. von Luxburg, R. C.Williamson, and I. Guyon. “Clustering: Science or Art?”
In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning.
Vol. 27. Proceedings of Machine Learning Research. 2012, pp. 65–79.

73

Paper II
Split-Merge Evolutionary Clustering for
Multi-View Streaming Data

Vishnu Manasa Devagiri, Veselka Boeva, Elena Tsiporkova
In: 24th International Conference on Knowledge-Based and Intelligent
Information & Engineering Systems KES 2020, Procedia Computer Sci-
ence 176, 2020, pp. 460–469, DOI: 10.1016/j.procs.2020.08.048

Abstract

In this study, we propose a new multi-view stream clustering ap-
proach, calledMVSplit-Merge Clustering. The proposed approach is an
extension of an existing split-merge evolutionary clustering algorithm
(entitled Split-Merge Clustering) to multi-view data applications. The
extended version can be used to integrate data from multiple views in
a streaming manner and discover cluster structure for each data chunk.
The MV Split-Merge Clustering can be applied for grouping distinct
chunks of multi-view streaming data so that a global integrated cluster-
ing model is built on each data chunk. At each time window, an updated
clustering solution (local model) is initially produced on each view of
the current data chunk by applying the Split-Merge Clustering algorithm.
Formal Concept Analysis is then used in order to integrate information
from the multiple views (local clustering models) and generate a global
model (formal concept lattice) that reveals the correlations among the
clusters of the local models. The proposed MV Split-Merge Clustering
has been initially evaluated on a publicly available data set. Our results
show that the approach is able to identify a clustering structure and rela-
tionships among the different views comparable to those produced in a
batch scenario.
Keywords: Clustering algorithms, Data stream mining, Evolutionary
clustering, Multi-View clustering, Online learning

1 Introduction
These days there are a number of smart devices used in our everyday life collecting
tons of information continuously. Information collected by these devices is often in-

75

complete and would require data from other devices to deduce useful patterns, and
groups. For example, while we are performing activities in our everyday life differ-
ent types of measurements are stored by different devices like smart phones, smart
watches, etc. Information form different views when integrated together could dis-
cover new groups or patterns which could not have been found otherwise [1]. Bring-
ing all this information together is a tedious task which requires a lot of computational
resources as well as bandwidth [2, 3]. So, using a multi-view solution, which can in-
tegrate information from different devices (views) to a global model in an effective
way would be of a great use. Moreover, the data collected in these views are seldom
of the same type and requires the designed algorithms to be able to handle heteroge-
neous data.

In the above scenarios data also arrives continuously in a potentially infinite
stream and has to be processed by a resource-constrained system. Hence, multi-view
stream data mining algorithms are needed to process distributed fast generated data,
fundamental properties of which may also change, i.e. the algorithms must handle
concept drift. Most traditional data mining algorithms cannot meet these challenges,
since they assume centralized and static data. In addition, in many smart monitoring
applications the model has to be developed, trained, and evaluated with no direct
access to labeled data.

To address the above-discussed challenges, we propose aMulti-ViewSplit-Merge
data stream clustering algorithm, entitled MV Split-Merge Clustering. The proposed
algorithm can be applied for grouping distinct chunks of multi-view streaming data
so that an integrated global clustering model is built on each data chunk. Initially, a
updated local clustering model is produced on each view of the current data chunk by
applying the Split-Merge evolutionary clustering algorithm (Split-Merge Clustering),
published in [4]. Formal Concept Analysis (FCA) is then used in order to integrate
information from the local clustering models and generate a formal concept lattice
(global model) that reveals the associations among the local models. Notice that the
updated local models are built by analysing and integrating the information presented
in the current and previous data chunk. In that way, the proposed MV Split-Merge
clustering algorithm is capable of performing vertical and horizontal data integration,
i.e. over data chunks of each individual view and over all available views per chunk.

The proposed MV Split-Merge Clustering can be applied to tackle different as-
pects of the today smart monitoring applications such as smart healthcare, smart
buildings, etc., where data collection is not centralized. For example, it can be used
for continuous adaptation of the model and improvement of the monitoring as more
data becomes available. Another example is modelling and detection of context, such
as activity mode in health monitoring applications, from multiple sensor values. The
algorithm is also able to produce a global model even when data from some sensors
are missing, due to network changes (addition or removal of nodes) or degradation.
Themissing (undelivered) data viewmodels can be re-constructed by using the global
and local models built at the previous time window. Notice that the proposed algo-

76

rithm is also robust to the privacy aspects similar to some of the algorithms reviewed
in [2], as actual data from the local devices is not transmitted to the global system
(cloud) in order to create a global model.

The rest of the paper is structured as follows. Section 2 contains a brief descrip-
tion of the related work. This is followed by Section 3 which introduces required
background. The proposed approach is explained in Section 4. Details about the
data, experimental setting and discussion of the results obtained from initial evalu-
ation of the proposed approach are presented in Section 5. Section 6 is devoted to
conclusions and future work.

2 Related Work
Distributed data mining is an area of study that addresses the problems of large data
which is not available at a single location [3]. A good summary of the published
distributed data mining approaches can be found in [3]. In addition, an overview
of existing distributed clustering algorithms has been published in [2]. The authors
explore distributed clustering algorithms based on density, k-means, privacy pro-
tection and highlight advantages and disadvantages of the studied methods. They
compare two of the distributed clustering algorithms with a centralised k-means al-
gorithm. Their experiments have shown that the centralized algorithm has a better
performance. According to the authors it might have been due to the reason that the
global model does not have the complete information that is available.

There aremany reviews published in the areas related tomulti-view clustering [5–
7]. Benezúr et al. [8], summarize the work done in the area of online learning. In [7],
the authors consider five popular traditional clustering techniques and adapt them to
multi-view clustering. The advantages of the multi-view adaptations in comparison
with the traditional approaches have been demonstrated.

Different classifications and categorizations of the existing state-of-the art dis-
tributed data mining and multi-view clustering approaches have been proposed in the
above discussed reviews. Based on [3], the algorithm proposed in this study could
be assigned to meta-learning, heterogeneous data categories. Meta-learning, as our
approach builds a global model by using the knowledge presented in the local clus-
tering models. Heterogeneous data, as the algorithm is able to handle heterogeneous
data across different data views.

Different multi-view clustering algorithms have been proposed in the datamining
literature, e.g. [1, 9–12]. In [9, 11], the authors handle the issue of incomplete views
in multi-view clustering. A kernel k-means is used in each view in [11] and informa-
tion from all the views is fused to find a consensus clustering. In [10], a multi-view
clustering algorithm, entitled MVC-LFA, has been proposed. The MVC-LFA has
been benchmarked to eight other state of the art algorithms and shown to outperform
those in the conducted evaluations. In [12], a weighted multi-view clustering with

77

feature selection has been proposed to use information from multiple views simulta-
neously to boost the clustering results. In [1] the multi-view clustering problem is
dealt as a multi-objective optimisation problem.

Another interesting and slightly different problem has been addressed in [13].
The authors deal with multi-view clustering in which the views are added gradually
(streaming views). Initially they have a model built based on the data from currently
available views and as new views arrive the algorithm is able to integrate this infor-
mation into the built clustering solution.

Although a lot of research in the area of multi-view clustering has already been
published, designing multi-view clustering algorithms specially suited for streaming
data is still a quite new research direction. According to the authors of [14], their
work is the first one to have addressed this problem. In [14], they propose a multi-
view clustering algorithm (MVStream), which is based on support vectors. The pro-
posed algorithm is robust to concept drift and is also capable of detecting clusters of
arbitrary shapes.

FCA has been used in the field of data integration, e.g. see [15–17]. A MapRe-
duce approach for clustering of data sets generated in multiple-experiment settings
is proposed in [15]. It is inspired by the map-reduce functions used in functional pro-
gramming and consists of two distinctive phases: map-reduce clustering and FCA-
based analysis. The latter is applied to analyse and further refine the generated clus-
tering solution. Hristoskova et al. have proposed a generic consensus clustering
technique that applies FCA to consolidate clustering solutions derived from several
microarray data sets [16]. In [17], the authors proposes a FCA-based solution for
data reduction. They initially group the attributes (properties in FCA terminology)
and this modified set of attributes or properties are then used to describe the objects.
Notice that our algorithm instead of grouping attributes, initially clusters the avail-
able objects (instances) in each view. Then the labels of the generated clusters are
interpreted as properties and are used to describe the objects in the final clustering
solution (global model).

3 Methods and Background
In this study, we propose an extension of the Split-Merge Evolutionary clustering
algorithm (Split-Merge Clustering) published in [4] to multi-view data stream sce-
narios. The proposed algorithm, entitled MV Split-Merge Clustering, can be used
to integrate data from multiple views in a streaming manner. The MV Split-Merge
Clustering can be applied for grouping distinct chunks of multi-view streaming data
so that a global clustering model is built on each data chunk. At each time window,
a updated clustering solution (local model) is initially produced on each view of the
current data chunk by applying the Split-Merge Clustering. In that way updated local
models reflecting the information presented in the current and previous data chunk

78

are obtained. FCA is then used in order to integrate information from the local clus-
tering models and generate a global model that reveals the relationships among the
local models.

3.1 Split-Merge Clustering
Split-Merge Clustering has been proposed in [4]. It is an evolutionary clustering algo-
rithm designed to be robust to concept drift scenarios. The algorithm can be applied
to update an existing clustering solution when new data arrives. The Split-Merge
Clustering accommodates newly arrived data into the existing clustering solution
thus also reducing the amount of computations required to build a new clustering
solution on the expanded data. Namely, it enables to compute clusters on a new por-
tion of data collected over a defined time window (or a given data chunk) and to
update the existing clustering solution by the computed new one. The existing and
the newly constructed clusterings are initially modelled as a bipartite graph which
is further decomposed into connected components (bi-cliques). Each component is
further analysed and if it is necessary it is decomposed into sub-components. The
sub-components are then taken into consideration in producing the final clustering
solution. For example, if an existing cluster is overclustered, i.e. it intersects two
or more clusters in the new clustering, it is split between those. If several existing
clusters intersect the same new cluster, i.e. they are underclustered, they are merged
with that cluster.

A detailed description of the Split-Merge Clustering and its pseudo code can be
found in [4].

3.2 Formal Concept Analysis
Formal Concept Analysis (FCA) [18] is a data analysis method which enables to
discover hidden knowledge existing in data. It allows to extract implicit relationships
between objects described through a set of attributes. Central to FCA is the notion
of a formal context. Namely, FCA derives a concept lattice from a formal context
constituted of a set of objectsO, a set of attributesA, and a binary relation defined on
the Cartesian productO×A. The context is described as a table, the rows correspond
to objects and the columns to attributes or properties and a cross in a table cell means
that “an object possesses a property”. FCA can be used for a number of purposes
among which knowledge formalization and acquisition, ontology design, and data
mining are some.

The concept lattice is composed of formal concepts, or simply concepts, orga-
nized into a hierarchy by a partial ordering (a subsumption relation allowing to com-
pare concepts). Intuitively, a concept is a pair (X, Y) where X ⊆ O, Y ⊆ A, and X
is the maximal set of objects sharing the whole set of attributes in Y and vice-versa.

79

The set X is called the extent and the set Y the intent of the concept (X, Y). The
subsumption (or sub-concept – super-concept) relation between concepts is defined
as follows: (X1, Y1) ≺ (X2, Y2) ⇔ (X1 ⊆ X2 or Y2 ⊆ Y1). Relying on this sub-
sumption relation ≺, the set of all concepts extracted from a context is organized
within a complete lattice, that means that for any set of concepts there is a smallest
super-concept and a largest sub-concept, called the concept lattice.

FCA is capable of discovering hidden knowledge by structuring the data. Namely,
the concept lattice organizes the data into concepts (formal abstractions) that are de-
scribed through attributes and in that way allowingmeaningful human-understandable
interpretation [18]. Thus FCA can be seen as a conceptual clustering technique as it
provides descriptions for the abstract concepts it produces.

4 Proposed Multi-View Split-Merge Clustering
In this section the proposedMVSplit-Merge Clustering algorithm is further discussed
by formally describing the problem and introducing the main operations and steps of
the algorithm.

Assume that a particular phenomenon (patient, physical object etc.) is moni-
tored under n different circumstances (views) in a streaming fashion. In addition,
the data arrives over time in chunks and each chunk can contain different number of
data points. Each chunk t can be represented by a list of n different data matrices
Dt = {Dt1, Dt2, . . . , Dtn}, one per view. Each matrix i (i = 1, 2, . . . , n) contains
the information about the data points in the current chunk with respect to the corre-
sponding view. Assume that chunk t contains Nt data points.

Initially, n clustering models, one per view, can be built on available multi-view
historical data or on the initial data chunk. Let Ct = {Ct1, Ct2, . . . , Ctn} be a set
of clustering solutions (local models), such that Cti (i = 1, 2, . . . , n) represents the
grouping of the data points in tth chunk with respect to ith view, i.e. a local model
built on data set Dti. When new data chunk arrives, i.e. the new data matrices
Dt+1 = {D(t+1)1, D(t+1)2, . . . , D(t+1)n} are available the main challenge in the
described context is how to update the current local clustering models and build a
global model. The global model may be useful to combine and find existing implicit
relationships between the local clustering models.
Basic operations conducted by our MV Split-Merge Clustering algorithm on each
data chunk t are explained below:

1. Input: Existing n local clustering modelsCt built on tth data chunk and newly
arrived data Dt+1.

2. Adapting step: Updating the existing local cluster models by applying the
Split-Merge Clustering.

80

(a) Build a clustering solution on each new datamatrixD(t+1)i (i = 1, 2, . . . , n)
of (t + 1)th chunk.

(b) Use the Split-Merge Clustering to update the local clustering models Ct.
In order to build the updated local models we consider only the data
points from chunks t and (t + 1).

(c) Generate updated local clustering models Ct+1 = {C(t+1)1, C(t+1)2, …,
C(t+1)n}. Each clustering solution C(t+1)i (i = 1, 2, . . . , n) distributes
the data points into ki disjoint clusters.

3. Integration step: Use FCA to integrate the local clustering models Ct+1 into
a global model G(t+1).

(a) Create a formal context by using information about the data points’ dis-
tribution from the local clustering models. In our case a formal con-
text consists of the set of (Nt + Nt+1) data points, the set of K (K =
k1 + k2 + . . . + kn) clustering labels of Ct+1 and an indication of which
data points are associated with which clusters (properties). Thus the con-
text is described as a matrix, with the data points corresponding to the
rows and the cluster labels corresponding to the columns of the matrix,
and a value 1 in cell (i, j) whenever data point i belongs to cluster Cj

(j = 1, 2, . . . , K). Note that in each row we will have exactly n values
of 1.

(b) Generate a formal concept lattice (i.e. a global model G(t+1)) by using
the built formal context.

4. Output: Updated local clustering models Ct+1 and integrated global model
G(t+1).

Figure 1 illustrates the basic operations of the MV Split-Merge Clustering with a
two-view scenario example. We have 24 data points in chunk t that are represented
by two different views. These data points are grouped into two clusters w.r.t. view 1
and into three clusters w.r.t. view 2, respectively. In chunk (t + 1) the Split-Merge
Clustering is initially applied to update the two local clustering models of chunk t.
As one can notice one of the clusters of the view 2 clustering model is split between
the other two clusters thus resulting in two clustering model in chunk (t+1). FCA is
then used to integrate the two local clustering models of chunk (t + 1) into a global
model, i.e. the corresponding concept lattice revealing the relationships between the
two clusterings. For example, it can be seen that the data objects of blue triangle
cluster of view 1 are associated with the objects of blue square cluster of view 2.

In addition to the above description Figure 2 shows a diagram of main steps of
the MV Split-Merge Clustering algorithm. As one can notice three main steps can
be recognized: constructing a clustering solution on each view of the newly arrived

81

Current Local
Clustering Models

View 1

View 2

Update Local
Clustering Models

Build a Global
Model

Split-Merge
Clustering

Chunk t Chunk t + 1

FCA

∅

….

New data

New data

New data

New data

Figure 1: A two-view example of the MV Split-Merge Clustering operations

chunk; updating the local clustering models; building a global model on the current
chunk. In that way on each data chunk a clustering solution is initially generated on
each view and it is further used to update the corresponding local clustering model
built on the previous data chunk. The Split-Merge Clustering algorithm, introduced
in [4], is used for updating the existing clustering solution by the computed new one.
This algorithm is more robust to concept drift scenarios by being able to examine
clusters generated on each view of the new data chunk and eventually capture new
trends in each view. The algorithm produces a updated local clusteringmodel on each
view by merging some clusters with ones from the newly constructed clustering on
this view while others are transformed by splitting their elements among several new
clusters. The produced local clustering models are finally integrated into a global
model by applying FCA method. FCA allows to derive a concept lattice from a
formal context. In our scenario, the formal context constitutes of the set of data points
and the set of clustering labels (see 3(a) in the above description). Notice that on one
hand the built formal context can be utilized to abstract the summary statistics of the
historical multi-view data points. On the other hand the generated concept lattice
(global model) provides information about implicit relationships (concepts) among
the data objects described through different view clustering labels.

According to [4], the computational complexity of the Split-Merge Clustering is
O(N(k + k′)m), where m is the dimensionality of the learning problem, N is the
number of instances in the newly arriving data, k and k′ are number of clusters in
the current and new data chunk, respectively. This represents the cost of building
the local clustering models at each data chunk. The number of views n usually does
not have a significant effect on the cost, since n << N and n << m. Furthermore,

82

NoYes
Initial Chunk

(t = 1)

Update local
clustering models
using Split-Merge

Clustering

Streaming
Data

Read t-th multi-view
data chunk

Build a clustering
solution on each view

of chunk t

Read local clustering
models built on

chunk t-1

Build a global model
on chunk t by
applying FCA

Figure 2: Flowchart diagram of the MV Split-Merge Clustering

the Python implementation of FCA, we have used [19], is based on the algorithm
proposed in [20]. According to the authors its time complexity is O(L2), where L is
the number of lattice concepts.

5 Initial Evaluation and Results
This section provides information about the used data, experimental settings, con-
ducted experiments, and discusses the obtained initial results.

5.1 Data and Experimental Setup
For initial evaluation of the proposed algorithm we have used a publicly available
data set [21] that describes the medical conditions of undergraduate students based
on their anthropometric data. The data contains information about 399 undergraduate
students aged between 16 and 63 years old, where 56.3% are women. The following
features describe the data: age, obesity, body mass index (BMI), waist circumference
(WC), hip circumference (HC), and waist hip ratio (WHR), Systolic Blood Pressure
(SBP), Diastolic Blood Pressure (DBP), preh for women and hyper for men, where

83

the preh and hyper are classification labels that show what kind of blood pressure the
individual has (e.g., regular or hyper).

In order to adapt the data set to a multi-view streaming scenario we have divided
the available features into three groups (views). The first view (v1) consists of age
and sex; the second view (v2) includes BMI, WC, HC, WHR; and the third view (v3)
contains details about blood pressure, i.e. SBP and DBP. The streaming scenario has
been modelled by dividing the data set into two parts, where one part consisting of
70% of the data represents the current data chunk and the other part consisting of the
remain 30% of the data represents the newly arriving data chunk.

The data set is further used to generate 10 test data set couples by randomly
separating the individual profiles in two sets, as it was explained above. Thus the
first set (279 patients) of each couple presents the current data chunk of individual
profiles, and the other one (120 individuals) is the new chunk of patients’ profiles.
In that way we have created 10 test data set couples. In addition, each data set has
three different representations (views), i.e. it is separated into three different view
sets (v1, v2, v3). v1 records the patient age and gender. v2 has information about the
patient anthropometric features, e.g., such as BMI, WC, HC and WHR. Finally, v3
contains information about the patient’s systolic and diastolic blood pressure levels.

The above multi-view data context can be used to study and associate different
age categories with the patient anthropometric measurements and persons’ increased
risk for cardiovascular disease, e.g., hypertension. For example, it can be useful to
find the correlations between an age category with specific anthropometric measure-
ments and high blood pressure levels and further study and try to understand these
correlations. Therefore the patient profiles can initially be grouped separately for
each view and then the groups from the different views can be associated. However,
when new patients data becomes available the groups obtained in the different views
are necessary to be adapted in order to reflect the new information. In addition, the
new patients data may also affect the groups’ associations and even new groups may
appear in some views. In this scenario it may be useful to have a technique that is
able to continuously adapt the grouping in different views as well as the associations
between views when new data arrives.

Table 1: Cluster categories in view 1

Cluster label Cluster description Cluster size
v10 Adolescence, male (age < 20) 44
v11 Adolescence, female (age < 20) 63
v12 Early adulthood, male (20 ≤ age ≤ 39) 124
v13 Early adulthood, female (20 ≤ age ≤ 39) 157
v14 Adulthood, male (age > 39) 7
v15 Adulthood, female (age > 39) 4

The patients’ profiles in v1 can be initially grouped in six categories based on
the individuals’ age and sex (see Table 1). In the second view (v2) the patients are
distributed in four body weight categories with respect to their BMI levels. The body
weight categories are defined according to WHO BMI cut-offs (see Table 2). In v3

84

the values of SBP and DBP are used to group the data into six categories labeled as
Level 1, Level 2,. . ., Level 6 as in [22] (see Table 3).

The MV Split-Merge Clustering algorithm has been implemented in Python ver-
sion 3.7. Prepossessing and metrics libraries, NearestCentroid have been used from
the Scikit-learn library. In addition, Python library Concepts has been used for FCA [19].
The executable of the proposed algorithm and the experimental results are available
on GitLab1.

Table 2: Cluster categories in view 2

Cluster label Cluster description Cluster size
v20 underweight (BMI ≤ 18.49) 21
v21 normal weight (18.50 ≤ BMI ≤ 24.99) 234
v22 overweight (25.00 ≤ BMI ≤ 29.99) 113
v23 obese (BMI ≥ 30.00) 31

Table 3: Cluster categories in view 3

Cluster label Cluster description Cluster size
v30 Level 1 (SBP < 120 and DBP < 80) 141
v31 Level 2 (120 ≤ SBP ≤ 129 and/or 80 ≤ DBP ≤ 84) 83
v32 Level 3 (130 ≤ SBP ≤ 139 and/or 85 ≤ DBP ≤ 89) 67
v33 Level 4 (140 ≤ SBP ≤ 159 and/or 90 ≤ DBP ≤ 99) 80
v34 Level 5 (160 ≤ SBP ≤ 179 and/or 100 ≤ DBP ≤ 109) 23
v35 Level 6 (SBP ≥ 180 and/or DBP ≥ 110) 5

5.2 Results and Discussion
We have used the whole data set, explained in Section 5.1, to build a global model
that links the three data views in a batch data fashion. This model will be used as
a baseline and the clustering solutions generated by applying the proposed multi-
view streaming algorithm will be benchmarked to it. Three local clustering models
are created for the three data views as it was explained in Section 5.1 (see Table 1,
Table 2 and Table 3, respectively). Then a formal context presented by a 399 × 16
matrix, with the individuals corresponding to the rows and the cluster category labels
corresponding to the columns is built. Finally, a formal concept lattice for the built
context is generated. It produces a lattice of 147 non-empty concepts where each one
represents a subset of individuals who belong to a number of cluster categories. We
are interested in those concepts that link clusters from all the three views, e.g., {v12,
v22, v34} is a concept that contains all overweight adult males (concept 10 in Table 4)
having Level 5 of the blood pressure category. 74 such concepts are generated. We
are interested in studying about people with increased risk for cardiovascular disease.
Therefore we have selected concepts with level of the blood pressure above 3, i.e.
Level 4, 5 and 6, and cardinality above 2. We have made an exception only for Level
6, since it does not have any concepts with more than 2 instances. These concepts
are listed in Table 4.

1https://gitlab.com/vishnu.manasa26/mv_splitmerge_algorithm

85

http://scikit-learn.org/stable/
https://pypi.org/project/concepts/0.9.1/
https://gitlab.com/vishnu.manasa26/mv_splitmerge_algorithm
https://gitlab.com/vishnu.manasa26/mv_splitmerge_algorithm

Table 4: Concepts from the global clustering model generated in the batch data scenario

Blood Pressure Level S/N Concept Concept Size Blood Pressure
Level 4 1 v10, v21, v33 7 Hyper and Regular

2 v12, v21, v33 14 Hyper and Regular
3 v13, v21, v33 15 Pre
4 v10, v22, v33 3 Hyper
5 v11, v22, v33 6 Pre
6 v12, v22, v33 18 Hyper and Regular
7 v10, v23, v33 3 Hyper and Regular
8 v12, v23, v33 3 Hyper and Regular
9 v13, v23, v33 3 Pre

Level 5 10 v12, v22, v34 4 Hyper and Regular
11 v12, v23, v34 3 Hyper

Level 6 12 v13, v21, v35 2 Pre

Our experiments are carried out according to the experimental setup described
in Section 5.1. The streaming scenario is modelled by dividing the data set in two
parts: the current data chunk and the newly arriving one. Thus the whole data set
is used to generate 10 such test data set couples. The three local clustering models
are initially built on the first data set (current chunk) of each test couple as it was
described in Section 5.1. The Split-Merge Clustering is then applied to update the
clustering solution on each view of the first data set of each test couple by the newly
arrived data chunk (its second data set). Hence three updated local clustering models
are produced for each test data couple. FCA is then used to integrate these local
clustering solutions into a global clustering model of each test data couple.

Out of the ten experimental iterations, explained above, we have selected the
results of one to be presented and discussed in detail further in this section. The
lattice produced in this iteration has a total of 160 non-empty concepts. Out of these
82 concepts link clusters from all the three views.

Table 5 presents how the concepts in Table 4 aremodified or remained unchanged
in the stream data scenario, i.e. when the MV Split-Merge Clustering has been used
to generate the global clustering model. Note that concepts with cardinality of 2 and
above are only listed. It can be observed that there is not much difference in the
number of concepts linking clusters from all the three views in the benchmark (74
concepts) and the ones generated by the MV Split-Merge Clustering (82 concepts).
In addition, the number of clusters of the three updated local models are the same as
those of the corresponding local clustering solutions produced in the batch scenario.
It can also be noticed that some concepts have remained unchanged in Table 5, e.g.
11 and 12. In fact, all the concepts of Level 6 are the same as those in the benchmark
solution (not shown in the tables). Some concepts however, are partitioned into a few
in the concept lattice generated in the stream data scenario. For example, instances
of concept 1 in Table 4 are distributed into two different Level 4 concepts in Table 5.
There are also concepts that contain instances from other blood pressure levels be-
sides the three studied, e.g. concepts 3, 6 and 9. This is mostly due to the split-merge
operations used to update the local clustering models of the first data chunk.

It is interesting to notice that some of patients grouped into concepts with high

86

Table 5: Concepts from the global clustering model produced in the stream data scenario

Blood Pressure Level S/N Concept Concept Size Blood Pressure
Level 4 1 v10, v21 2 1 Hyper, 1 Regular
Level 4 1 v10, (v20 ∧ v21) 4 2 Hyper, 2 Regular
Level 4 2 v12, (v20 ∧ v21) 6 4 hyper, 2 Regular
Level 4, 5 2 v12, v21 4 4 Hyper
Level 4 3 v13, (v20 ∧ v21) 6 Pre
Level 3, 4 3 v13, v21 5 Pre
Level 3, 4 4 v10, v22 6 2 Hyper, 4 Regular
Level 4 5 v11, v22 6 Pre
Level 3, 4 6 v12, v22 12 6 Hyper, 6 Regular
Level 4 7 v10, v23 2 Hyper, Regular
Level 4 8 v12, v23 2 Hyper, Regular
Level 1, 2, 4 9 v13, v23 4 Pre
Level 5 11 v12, v23, v34 3 Hyper
Level 6 12 v13, v21, v35 2 Pre

level of blood pressure have a Regular class label, e.g. some overweight (v22) and
underweight individuals (v20). This might indicate that those people have implicitly
a higher risk factor. Other interesting aspect observed when comparing the results of
selected concepts with the benchmark solution is that the proposed algorithm is able
to distinguish people who have same level of SBP and DBP with people who have
different SBP and DBP levels to a large extent.

The above has motivated us to evaluate additionally the two clustering scenar-
ios with respect to the purity of the generated clustering solutions. For this purpose
we first consider how the four main classes (Regular male, Regular female, Hyper
and Pre) are distributed among the clusters. The score obtained for the benchmark
clustering is 0.89. The average value calculated on the ten conducted iterations of
our algorithm is 0.76. We have also evaluated a scenario with the six blood pressure
levels (i.e., Level 1 - Level 6) as main classes, where naturally the score generated by
the benchmark solution is 1 versus 0.65 for our algorithm. The obtained results are
logical taking into account that our algorithm does not have access to the complete
information initially. Its performance however, is not very distant from that of the
batch scenario. In addition, we have used the adjusted Rand Index [23] to determine
the similarity between the partitions generated in the two clustering scenarios as a
function of positive and negative agreements in pairwise cluster assignments. It pro-
duces a value in the interval [-1, 1], where 1 means that the clustering solutions are
identical. It has been calculated for each iteration of our experiment and the average
score is 0.44.

The time required to build three local models and a global model for the con-
sidered 10 iterations are 5.06 and 16.67 seconds, respectively. Consequently, for a
single run using 2.7 GHz Quad-Core Intel Core i7 processor these are 0.51 and 1.67
seconds, respectively. It is interesting to notice that the time needed for building a
global model is three times the time for constructing three local models. This is due to
the fact that the number of conceptsL (≈160) in the conducted experiments is higher
than the number of instancesN (120) in the new data chunk (see the discussion about
the algorithm time complexity in Section 4).

87

Wemay conclude that the results obtained by the MV Split-Merge Clustering are
comparable to that generated in the batch data scenario. Our algorithm is able to dis-
cover an underlying clustering structure and implicit relationships among the clusters
of local clustering models. It is also worth to notice that the proposed algorithm is
an evolutionary approach designed for stream data scenarios and would require a lot
of less computational resources in the long run.

6 Conclusions and Future work
We have proposed a new multi-view stream clustering approach, which is an exten-
sion of an existing split-merge evolutionary clustering algorithm to multi-view data
applications. The proposed algorithm is shown to be robust to processing, analysing
and integrating multi-view streaming data. It is capable of performing vertical and
horizontal data integration, i.e. over data chunks of each individual view and over all
available views per chunk. In that way the learning model is continuously adapted
and improved as more data becomes available. Initial evaluation of the proposed
algorithm has been done on a public medical data. The obtained results have been
benchmarked against a clustering model generated in a batch data scenario. The
clustering structure and discovered relationships among the local clustering models
produced by the proposed algorithm are comparable to those identified in the batch
scenario.

Our future plans are to pursue further study and evaluate the algorithm potential
on richer data sets and in case studies from different application domains. For ex-
ample, we are interested in evaluating the algorithm on real-world data coming from
a smart application monitoring blood glucose level. We also plan to compare the
proposed algorithm with some of the other state of the art algorithms applicable to
multi-view stream data scenarios.

Acknowledgements
This work is part of the research project ”Scalable resource efficient systems for big
data analytics” funded by the Knowledge Foundation (grant: 20140032) in Sweden.

We would like to thankMilena Angelova, for her valuable feedback and support
during the implementation phase.

References
[1] B. Jiang and et al. “Evolutionary multi-objective optimization for multi-view

clustering”. In: 2016 IEEE CEC 2016. 2016, pp. 3308–3315.

88

[2] M. Hai and et al. “A Survey of Distributed Clustering Algorithms”. In: Int.
Conf. on Ind. Control and Electronics Engineering. Aug. 2012, pp. 1142–
1145.

[3] L. Zeng and et al. “Distributed data mining: a survey”. In: Information Tech-
nology and Management volume 13 (2012), pp. 403–409.

[4] V. Boeva and et al. “Bipartite Split-Merge Evolutionary Clustering”. In:Agents
and AI. Ed. by J. van den Herik and et al. Springer, 2019, pp. 204–223. ISBN:
978-3-030-37494-5.

[5] D. Padmanabhan and A. Jurek-Loughrey. “Multi-View Clustering”. In: Link-
ing and Mining Heterogeneous and Multi-view Data. Unsupervised and Semi-
supervised Learning. Springer, Dec. 2018, pp. 27–53.

[6] Y. Yang and H.Wang. “Multi-view clustering: A survey”. In: Big Data Mining
and Analytics 1.2 (June 2018), pp. 83–107. ISSN: 2096-0654.

[7] F. Ye and et al. “New Approaches in Multi-View Clustering”. In: Recent Ap-
plications in Data Clustering. Aug. 2018.

[8] A. A. Benczúr, L. Kocsis, and R. Pálovics. “Online Machine Learning in Big
Data Streams”. In: CoRR abs/1802.05872 (2018).

[9] X. Liu and et al. “Late Fusion Incomplete Multi-View Clustering”. In: IEEE
Trans. on Pattern Analysis and Machine Intelligence 41.10 (2019), pp. 2410–
2423.

[10] S. Wang and et al. “Multi-view Clustering via Late Fusion Alignment Maxi-
mization”. In: Proceedings of IJCAI-19. July 2019, pp. 3778–3784.

[11] Y. Ye and et al. “Incomplete Multiview Clustering via Late Fusion”. In: Com-
putational Intelligence and Neuroscience 2018 (Oct. 2018), pp. 1–11.

[12] C. Zhu. “Kappa Based Weighted Multi-View Clustering with Feature Selec-
tion”. In: Proceedings of ICCPR 2018. ICCPR ’18. Shenzhen, China, 2018,
pp. 50–54. ISBN: 978-1-4503-6471-3.

[13] P. Zhou and et al. “Incremental multi-view spectral clustering”. In:Knowledge-
Based Systems 174 (2019), pp. 73–86. ISSN: 0950-7051.

[14] L. Huang and et al. “MVStream:MultiviewData StreamClustering”. In: IEEE
Transactions onNeural Networks and Learning Systems 31.9 (2020), pp. 3482–
3496.

[15] V. Boeva and et al. “Analysis of Multiple DNA Microarray Datasets”. In:
Springer Handbook of Bio-/Neuroinformatics. Ed. by N. Kasabov. Berlin, Hei-
delberg: Springer BerlinHeidelberg, 2014, pp. 223–234. ISBN: 978-3-642-30574-
0.

89

[16] A. Hristoskova, V. Boeva, and E. Tsiporkova. “A Formal Concept Analysis
Approach to Consensus Clustering of Multi-Experiment Expression Data”. In:
BMC Bioinformatics 15 (May 2014), p. 151.

[17] S. K. and A. K. Ch. “Concept Lattice Simplification in Formal Concept Anal-
ysis Using Attribute Clustering”. In: Journal of Ambient Intelligence and Hu-
manized Computing 10 (2018), pp. 2327–2343. ISSN: 1868-5145.

[18] B. Ganter, G. Stumme, and R. Wille. “Formal Concept Analysis: Foundations
and Applications”. In: LNAI, no. 3626, Springer-Verlag, 2005.

[19] S. Bank.Formal Concept Analysis with Python. 2019. (Visited on 03/18/2020).
[20] C. Lindig. “Fast concept analysis”. In: Working with Conceptual Structures –

Contributions to ICCS 2000. Shaker Verlag, 2000, pp. 152–161.
[21] H. F. Golino and et al. “Predicting Increased Blood Pressure Using Machine

Learning”. In: Journal of Obesity 2014 (2014).
[22] Y. Li and et al. “Clustering of cardiovascular behavioral risk factors and blood

pressure among people diagnosed with hypertension: a nationally representa-
tive survey in China”. In: Sci Rep. 6 (2016).

[23] W. M. Rand. “Objective Criteria for the Evaluation of Clustering Methods”.
In: Journal of the American Statistical Association 66.336 (1971), pp. 846–
850. ISSN: 01621459.

90

Paper III
A Multi-View Clustering Approach for
Analysis of Streaming Data

Vishnu Manasa Devagiri, Veselka Boeva, Shahrooz Abghari

In: Artificial Intelligence Applications and Innovations, Ed. by I. Ma-
glogiannis, J. Macintyre; L. Iliadis. Cham: Springer International Pub-
lishing, 2021, pp.169–183, DOI: 10.1007/978- 3-030-79150-6_14

Abstract

Data available today in smart monitoring applications such as smart
buildings, machine health monitoring, smart healthcare, etc., is not cen-
tralized and usually supplied by a number of different devices (sensors,
mobile devices and edge nodes). Due to which the data has a hetero-
geneous nature and provides different perspectives (views) about the
studied phenomenon. This makes the monitoring task very challenging,
requiring machine learning and data mining models that are not only
able to continuously integrate and analyze multi-view streaming data,
but also are capable of adapting to concept drift scenarios of newly arriv-
ing data. This study presents a multi-view clustering approach that can
be applied for monitoring and analysis of streaming data scenarios. The
approach allows for parallel monitoring of the individual view clustering
models andmining view correlations in the integrated (global) clustering
models. The global model built at each data chunk is a formal concept
lattice generated by a formal context consisting of closed patterns rep-
resenting the most typical correlations among the views. The proposed
approach is evaluated on two different data sets. The obtained results
demonstrate that it is suitable for modelling and monitoring multi-view
streaming phenomena by providing means for continuous analysis and
pattern mining.
Keywords: Multi-View Clustering, Multi-Instance Learning, Closed
Patterns, Streaming data, Formal Concept Analysis.

91

1 Introduction
In recent years, the amount of data being generated in areas such as web, social media,
IoT, and smart monitoring applications is increasing rapidly. Data generated in most
of these areas is usually heterogeneous as the data is generally collected at different
locations using variety of devices (e.g., mobile devices, edge nodes, sensors in IoT
networks) and/or streaming in nature as new data is continuously produced. Another
common factor of the data generated in streaming scenarios is its evolving nature.
Change of data characteristics over a period of time, known as concept drift, is an
important challenge to be addressed when dealing with streaming data.

Clustering techniques are well-known tools and broadly used for analysis and
extraction of interesting patterns from unlabeled data sets. Traditional clustering al-
gorithms however, are not suitable and cannot deal with the data generated in today’s
smart monitoring applications due to characteristics already mentioned above like
heterogeneity, streaming nature, concept drift [1]. There is a need for new clustering
algorithms that are able to address these challenges. Data stream mining is an area
dealing with the challenges concerning analysis and understanding of streaming data
scenarios. Multi-view clustering, a distributed clustering technique, is capable of
analysing heterogeneous data that are generated by different sources and represents
different views or perspectives about the studied phenomenon. In multi-view clus-
tering scenarios different views, contexts or interpretations of the data bringing com-
plementary information (e.g., numerical reports of a patient and reports like ECG),
are analysed in order to extract meaningful correlations among the different views.
Although many research studies have been conducted and published in both data
stream mining and multi-view clustering fields, the area of multi-view stream clus-
tering is still in its infancy and there is a need for clustering techniques addressing
and analysing streaming data in a multi-view fashion [2, 3]. Some of the major chal-
lenges of multi-view stream clustering techniques are data heterogeneity [4], incom-
plete views [3, 5, 6] and evolving nature of the data [2].

In this work, we propose a multi-view clustering algorithm, entitled MV Multi-
InstanceClustering, that can be used formonitoring and continuous analysis of stream-
ing data scenarios. The proposed algorithm allows for parallel monitoring of the indi-
vidual view clustering models and analyzing the views’ correlations revealed by the
integrated (global) clustering model. The individual view clustering models at each
data chunk are initially updated when new data arrives by applying multi-instance
clustering. Then, a global model can be built at each data chunk as a formal concept
lattice generated by a formal context. The latter consists of selected closed patterns
presenting the most typical correlations among the different views. Such a hierarchi-
cal global model allows to analyse and compare the views’ correlations derived by
two consecutive data chunks. Note that the local models’ data values are not needed
in order to build the global model which supports data privacy and lowers the re-
quired memory for data processing. In addition, if there are missing data in some

92

of the views the previously extracted correlations among the views could be used to
reconstruct the missing values.

2 Related Work
Distributed clustering techniques can deal with large, unlabelled and heterogeneous
data sets which cannot be gathered centrally [7–10]. Characteristics of distributed
data like heterogeneity, scalability, security, etc., demand novel robust clustering al-
gorithms to address these challenges [8]. While some researchers [7] have tried to
tackle various challenges in the field, others [8–10] have proposed an overview of the
research being done. Gan et al. [8] discuss various challenges and provide a summary
on the state-of-the-art distributed clustering techniques. The authors cover various
important concepts in the field of data mining like frequent itemset mining, frequent
sequence mining, frequent graph mining, clustering and privacy for distributed con-
text. In [9, 10], a comparative study on the various state-of-the-art distributed cluster-
ing techniques has been done. Bendechache and Kechadi [7] propose an algorithm,
entitled Distributed Dynamic Clustering algorithm, which is based on k-means for
spatial data that is distributed and heterogeneous.

Multi-view clustering deals with clustering techniques in which same data is
available in different perspectives or views complementing each other [3]. Studies
published in [1, 4], provide an overview and analysis of different multi-view cluster-
ing techniques proposed. Fu et al. [1] evaluate the selected multi-view algorithms on
seven real-world data sets using cluster validation metrics like accuracy, purity, and
normalized mutual information. In [4], the authors have reviewed available multi-
view clustering algorithms by grouping them into five categories. In series of pa-
pers [3, 5, 6], the authors address the challenges of incomplete views, where data
in some views maybe missing. Shao et al. [3] develop an algorithm, entitled Online
Multi-View clustering, based on non-negative matrix factorization for large scale in-
complete distributed data sets.

It is interesting to note that in [11], the authors treat multi-view clustering as
a multi-objective optimization problem. In [12], a multi-view clustering approach
based on non-negative matrix factorization and probabilistic latent semantic analysis
is proposed to obtain common consensus clustering across views. Research in [2, 3]
deals with streaming data in multi-view scenarios. Huang et al. [2] propose a novel
multi-view clustering approach for streaming data.

In the current state-of-the-art algorithms for multi-view clustering there are not
many solutions dealing with monitoring and analysis of streaming data and the chal-
lenges that come along with it. The proposed MV Multi-Instance Clustering algo-
rithm address these challenges.

93

3 Background
3.1 Multi-Instance Clustering and Hausdorff Distance
Multi-Instance (MI) clustering is an unsupervised learning process, where the data
objects are bags of instances and there is no information about the labels of bags [13].
This is a typical setting for many real world application scenarios in which, it is costly
and even in many cases impossible to obtain labeled data.

Multi-Instance clustering algorithms are supposed to partition a set of unlabeled
bags into a number of groups on the basis of a similarity measure. However, the task
of distributing objects into clusters is more difficult in the multi-instance context,
since the ambiguity due to the fact that the objects are bags of unlabeled often related
instances. In this sense, the similarity measures used in single-instance clustering
may not be appropriate for multi-instance clustering scenarios. Maximal Hausdorff
distance has been proposed in [14] tomeasure the distance between two bags and later
successfully applied to the standard multi-instance learning problem [15]. However,
in [13] the maximal Hausdorff distance has been found to not work well in the gen-
eralized multi-instance learning problems due to its sensitivity to outliers. Therefore,
the authors have proposed another distance called average Hausdorff distance.

In this paper, we use average Hausdorff distance to measure the distance between
two bags A and B, since the preliminary experiments with this distance have gener-
ated better results than the ones produced by the maximal Hausdorff distance. For-
mally, given two bags of data instances A and B, the average Hausdorff distance is
defined by Eq. III.1, where dist(a, b) is the distance between instances a ∈ A and
b ∈ B, which usually takes the form of Euclidean distance, and | . |, represents the
set cardinality.

H(A, B) =
∑

a∈A minb∈B dist(a, b) +
∑

b∈B mina∈A dist(a, b)
| A | + | B |

. (III.1)

3.2 Formal Concept Analysis
Formal Concept Analysis (FCA) [16] is a mathematical apparatus for deriving a con-
cept hierarchy from a collection of objects and their properties. FCA allows to gener-
ate and visualize the concept hierarchies. FCA is used for data analysis, information
retrieval, and knowledge discovery. In addition, it can be understood as conceptual
clustering method, which clusters simultaneously objects and their descriptions.

FCA derives a concept lattice from a formal context constituted of a set of ob-
jects O, a set of attributes A, and a binary relation defined on the Cartesian product
O × A. The context is described as a table, the rows correspond to objects and the
columns to attributes or properties and a cross in a table cell means that “an object
possesses a property”. The concept lattice is composed of formal concepts organized
into a hierarchy by a partial ordering (a subsumption relation allowing to compare

94

concepts). Intuitively, a concept is a pair (X, Y) where X ⊆ O, Y ⊆ A, and X
is the maximal set of objects sharing the whole set of attributes in Y and vice-versa.
Relying on the subsumption relation, the set of all concepts extracted from a context
is organized within a complete lattice, which means that for any set of concepts there
is a smallest super-concept and a largest sub-concept, called the concept lattice.

3.3 Closed Patterns
Sequential pattern mining is the problem of finding interesting frequent ordered pat-
terns from a sequence database [17]. Given a sequence database T and a pattern α
the support for α is the number of sequences in T that contain α as a sub-sequence.
The pattern α is called frequent if its support is equal or greater than a user-specified
support threshold. Mining frequent patterns in big databases can lead to generating
a large number of patterns. In order to mitigate this problem, one can only extract
frequent closed sequential patterns. A pattern α is closed when none of its super
patterns has the same support as α.

In this study, we apply BIDE [18], which is a famous frequent closed sequential
pattern mining algorithm, to extract patterns. The Python implementation of BIDE
is adopted from prefixspan library.

4 MV Multi-Instance Clustering using Closed Pat-
terns

In [19], an extension of the Split-Merge Evolutionary Clustering algorithm (abbrevi-
ated Split-Merge Clustering) [20] for multi-view data streaming scenarios has been
introduced. The introduced algorithm, MV Split-Merge Clustering, has been demon-
strated to be able to integrate data from multiple views in a streaming manner. The
algorithm can be applied for grouping distinct chunks of multi-view streaming data
so that a global clustering model is built on each data chunk. Initially, an updated
clustering solution (local model) is produced on each view of the current data chunk
by applying the Split-Merge Clustering. In that way updated local models reflecting
the information presented in the current and previous data chunks are obtained. FCA
is then used in order to integrate information from the local clustering models and
generate a global model that reveals the relationships among the local models.

We have recognized two main limitations of the MV Split-Merge Clustering [19].
First, the Split-Merge Clustering algorithm [20], used for updating the local cluster-
ing models, needs to find the cluster centroids in order to integrate the local models of
two consecutive data chunks. Our proposedMVMulti-Instance Clustering algorithm
overcomes this by interpreting the integration of two local models as aMulti-Instance
clustering problem, i.e. each cluster (bag) is regarded as an atomic object. Evidently,

95

https://pypi.org/project/prefixspan/

by exploiting Multi-Instance clustering analysis, we enable to improve the perfor-
mance of the algorithm and also handle the ambiguity which is typical for real-world
streaming data. For example, we would be able to model semi-supervised learning
scenarios where some bags may be labeled. Second, the MV Split-Merge Cluster-
ing [19] builds a global model by using all the identified correlation patterns among
the views. This leads to the generation of a large and complex concept lattice that
is not easy to be interpreted and analysed. In comparison, our MV Multi-Instance
clustering algorithm uses closed patterns, which considers the most typical correla-
tions among the views, to create a global clustering model. In this way, unimportant
concepts are excluded and do not complicate the understanding and analysis of the
built global model. In addition, there is an opportunity to obtain even a smaller set
of the most frequent (top-ranked) patterns based on the frequency or support score
associated with each closed pattern.

Let us formally describe our MV Multi-Instance Clustering algorithm. We con-
sider a streaming scenario where a particular phenomenon (physical object, biologi-
cal process, machine asset, patient etc.) is monitored under n different circumstances
(views). We further assume that the data arrives over time in chunks. Each chunk
t can contain different number of data points and can be represented by a list of n
different data matrices Dt = {Dt1, Dt2, . . . , Dtn}, one per view. Each matrix Dti

(i = 1, 2, . . . , n) contains the information about the data points in the current chunk
t with respect to the corresponding view i. Assume that chunk t contains Nt data
points. In addition, n clustering models, one per view, can be built on each data
chunk. Let Ct = {Ct1, Ct2, . . . , Ctn} be a set of clustering solutions (local models),
such that Cti (i = 1, 2, . . . , n) represents the grouping of the data points in tth chunk
with respect to ith view, i.e. a local model built on data set Dti.

On each data chunk, the proposed algorithm conducts two main operations. They
are described in Algorithms III.2 and III.3. The local models built on the current
chunk Ct are first updated by analysing the newly arrived data Dt+1. Clustering
solutions Ct+1 are initially built on the new data chunk t + 1 and correlated with
ones of chunk t in order to generate updated clustering models C

′
t with respect to

t + 1. Then, these local models C
′
t are used to build a global model that consists of

three parts providing information about different aspects of the studied phenomenon.
Namely, the model includes the formal context, closed patterns and concept lattice.
The latter two are generated based on the built formal context. The formal context
Ft consists of the set of (Nt + Nt+1) data points, the set of K (K = k1 + k2 + . . . +
kn) clustering labels of C

′
t and an indication of which data points are associated

with which clusters. Thus the context is described as a matrix, with the data points
corresponding to the rows and the cluster labels corresponding to the columns of
the matrix, and a value 1 in cell (i, j) whenever data point i belongs to cluster C

′
j

(j = 1, 2, . . . , K). Evidently, the formal context Ft contains all view correlation
patterns supported by the local clustering models. The set of closed patterns, denoted
by F c

t , contains the most typical correlations that exist among the views. Finally, the

96

concept lattice provides description of the hierarchical organisation of the concepts
it produces.

The operations for updating the local clustering models on data chunk t are given
in Algorithm III.1.

Algorithm III.1 Use Bi-Correlation MI-Clustering to update the local clustering
models on data chunk t
Input local clustering models Ct and newly arrived data Dt+1
for each view i (i = 1, 2, . . . , n) do

Build a clustering model C(t+1)i
Bi-Correlation MI-Clustering (Cti, C(t+1)i) (Algorithm III.2)

end for

Algorithm III.2 describes Bi-Correlation MI-Clustering that is applied for updat-
ing the local clustering models on data chunk t. Average Hausdorff distance (see
Section 3.1) is used to find the correlations between the two clustering solutions Cti

and C(t+1)i for each view i (i = 1, 2, . . . , n). Global threshold Ti (see Eq. III.2) is
calculated for each | Cti | × | C(t+1)i | adjacency matrix as follows:

Ti =
∑

p∈Cti
minq∈C(t+1)i

H(p, q) +
∑

q∈C(t+1)i
minp∈Cti H(p, q)

| Cti | + | C(t+1)i |
, (III.2)

where H(p, q) is the average Hausdorff distance (see Eq. III.1) between a cluster
p ∈ Cti and a cluster q ∈ C(t+1)i. Ti averages the Hausdorff distances between each
cluster inCti and its nearest cluster inC(t+1)i and vice-versa. Evidently, Ti measures
the average Hausdorff distance between two clustering solutions.

Algorithm III.2 Bi-Correlation MI-Clustering of Cti and C(t+1)i

Input local clustering models Cti and C(t+1)i
Build a | Cti | × | C(t+1)i | adjacency matrix based on Hausdorff distance
(Eq. III.1)
Calculate global threshold Ti (Eq. III.2)
Remove edges in the adjacency matrix for which H(p, q) > Ti

for each uniformly random cluster p in Cti do
Find average distance of adjacent nodes, denoted by T p

i

Remove edges in adjacency matrix for which H(p, q) > T p
i

Find neighbours of p in C(t+1)i, denoted by Np
(t+1)i

Find neighbours of each q ∈ Np
(t+1)i in Cti, denoted by N q

ti

Create cluster C ′
p = {p} ∪Np

(t+1)i ∪q∈Np
(t+1)i

N q
ti

Cti = Cti \ {p}
end for

97

Algorithm III.3 Use FCA and closed patterns to build a global model on data chunk
t

Input updated local clustering models C
′
t

Build a formal context, denoted by Ft. Ft is a (Nt + Nt+1) × K binary matrix
that indicates for each data point belonging to Dt ∪Dt+1 which clusters of C

′
t it

is associated with
Derive closed patterns, denoted by F c

t (F c
t ⊂ Ft), from the set of all built patterns

of Ft

Produce a formal concept lattice from F c
t

The adjacency matrix can also be visualized as a bipartite graph to illustrate how
the clusters are correlated. The nodes on the left side of the graph represent clustering
solution of chunk t, i.e. Cti, and those on the right hand side represents new clustering
solution i.e. C(t+1)i. Ti is used to filter out the edges between clusters which are far
apart and thus avoiding considering too many clusters to decide which ones to merge.
The average local distance T p

i could be considered as the local threshold for each
cluster p in Cti and it is used to find its closest clusters in C(t+1)i. The motivation of
using T p

i is that, it facilitates identifying new trends in the scenarios of concept drift,
where a group of data points can form a new cluster by slowly moving away from
their current cluster at each data chunk. By considering the average local distance
as a merging condition, we avoid early merging which allows such new clusters to
naturally form.

5 Evaluation
5.1 Data Sets and Experimental Setup
5.1.1 Anthropometric data:
Initial analysis is done on a comparatively small public data set [21] that describes
the medical conditions of 399 undergraduate students based on their anthropometric
data. Each student is described by the following features: age, obesity, body mass
index (BMI), waist circumference (WC), hip circumference (HC), and waist hip ratio
(WHR), Systolic Blood Pressure (SBP), Diastolic Blood Pressure (DBP), preh for
women and hyper for men, where the preh and hyper are classification labels that
show what kind of blood pressure the individual has (e.g., regular or hyper). In
order to mimic the streaming data scenario required for the proposed algorithm, the
data set is divided into historical and newly arriving data. The historical data set is
composed of the 70% of total data and the remaining 30% is treated as the newly
arriving data. The features of the data set are divided into three views, where view
1 (v1) contains details about age and gender, view 2 (v2) contains details about BMI,
WC, HC, WHR, and view 3 (v3) presents information about blood pressure (SBP,

98

DBP). Initial grouping of data points in each view is given in Table 1.

Table 1: Cluster categories in the views of Anthropometric data set

Label Cluster description Size
v10 Adolescence, male (age < 20) 44
v11 Adolescence, female (age < 20) 63
v12 Early adulthood, male (20 ≤ age ≤ 39) 124
v13 Early adulthood, female (20 ≤ age ≤ 39) 157
v14 Adulthood, male (age > 39) 7
v15 Adulthood, female (age > 39) 4
v20 underweight (BMI ≤ 18.49) 21
v21 normal weight (18.50 ≤ BMI ≤ 24.99) 234
v22 overweight (25.00 ≤ BMI ≤ 29.99) 113
v23 obese (BMI ≥ 30.00) 31
v30 Level 1 (SBP < 120 and DBP < 80) 141
v31 Level 2 (120 ≤ SBP ≤ 129 and/or 80 ≤ DBP ≤ 84) 83
v32 Level 3 (130 ≤ SBP ≤ 139 and/or 85 ≤ DBP ≤ 89) 67
v33 Level 4 (140 ≤ SBP ≤ 159 and/or 90 ≤ DBP ≤ 99) 80
v34 Level 5 (160 ≤ SBP ≤ 179 and/or 100 ≤ DBP ≤ 109) 23
v35 Level 6 (SBP ≥ 180 and/or DBP ≥ 110) 5

Our objective is to use this data set to build controlled and easy to interpret ex-
perimental multi-view streaming scenarios for studying and comparing the twomulti-
view clustering algorithms described in Section 4. In this setup two experiments are
conducted to evaluate the algorithms. Bi-Correlation MI-Clustering step of the pro-
posed algorithm is initially compared with Split-Merge Clustering [19] for updating
the local models. We also analyse how different views are related to each other using
the closed patterns derived from the global model.

5.1.2 Real-world sensor data:
The potential of the proposed approach is also demonstrated on a real-world data
set from a company in the smart building domain. The data has been used in [22]
for analysing and monitoring the control valve system behaviour. In smart building
domain different types of metrics are collected from a wide range of sensors available
for systems such as heating, ventilation, air conditioning, and refrigeration. Data
covering a year period (Jan 1st 2019 till Dec 27th 2019) is used in the current study.
The eight features listed in Table 2, seven of which also considered in [22], are used
in our experiments.

Table 2: Features included in the real-world sensor data set

View Id Acronyms Feature name Units

Operation
1 SST Secondary Supply Temperature ◦C
2 SRT Secondary Return Temperature ◦C
3 PHL Primary Heat Load kW

Performance
4 VOM Valve Openness Mean %
5 VOS Valve Openness Standard Deviation %
6 SE Sub-station Efficiency %

Context 7 OTM Outdoor Temperature Mean ◦C
8 OTS Outdoor Temperature Standard Deviation ◦C

The available data features are analysed and partitioned in three distinctive views:

99

system operational behaviour parameters, performance indicators and contextual fac-
tors. The features SST, SRT, and PHL are selected to model the system typical opera-
tional behaviour. The system performance can be evaluated by these three indicators:
VOM, VOS, and SE. Finally, the contextual factors are represented by the features:
OTM and OTS.

5.2 Results and Discussion
5.2.1 Anthropometric data:
This data can be used to study and associate different age categories with the patients’
anthropometric measurements to identify patients with increased risk for cardiovas-
cular disease, e.g., hypertension. The data set is used to generate 10 test data set
couples by randomly separating the individual profiles into two sets, as it was ex-
plained in Section 5.1.1. Thus the first set (279 patients) of each couple presents the
current data chunk of individual profiles, and the other one (120 individuals) is the
new chunk of patients’ profiles. In that way, we have created 10 test data set couples.

MV Split-Merge Clustering and MV Multi-Instance Clustering are applied and
compared on the built 10 test data sets. For MV Multi-Instance Clustering, we have
additionally studied and conducted the experiments with two different (maximal
Hausdorff versus average Hausdorff) distance measures in order to select the bet-
ter one, i.e. we have done 20 experiments in total. The average Hausdorff distance
has outperformed the maximal Hausdorff distance on all the 10 test data sets. This
confirms the discovery in [13], hence we have chosen to use this distance measure
in the definition of Algorithm III.2 and discuss its experimental results further in this
section.

Out of the ten experimental iterations of the proposed approach, we have selected
the results of one of the iterations (same as the one in [19]) to be presented and
discussed in detail further in this section. The lattice produced in this iteration by
MV Split-Merge Clustering has a total of 160 non-empty concepts. Out of these, 82
concepts link clusters from all the three views. The lattice size generated by MV
Multi-Instance Clustering on the built formal context is very similar, namely it has
165 non-empty concepts, out of which 83 concepts link clusters from all three views.
In the considered iteration, the local models generated in the three views have 6, 5
and 7 clusters, respectively. In view 1, the clusters presented in Table 1 are retained,
i.e. the same six age categories. In view 2, the cluster presenting all individuals
with obese weight (v23) has been split into two different clusters and similarly with
the individuals having blood pressure Level 5 (v34) in view 3. It can be observed
that most of the original clustering structure is retained with the proposed MVMulti-
Instance Clustering.

We compare MV Split-Merge Clustering [19] andMVMulti-Instance Clustering
algorithms with respect to the purity of the produced clustering solutions. For this

100

Table 3: Closed patterns showing correlations between all three views (support 10)

Blood Pressure Level S/N Concept Size Blood Pressure
Level 1 1 v13, v21 53 Regular
(v30) 2 v11, v21 26 Regular

3 v13, v22 15 Regular
4 v12, v21 12 Regular

Level 2 5 v13, v21 22 Regular, Pre
(v31) 6 v12, v21 15 Regular
Level 3 7 v12, v21 18 Regular
(v32) 8 v12, v22 12 Regular

9 v13, v21 10 Pre, 1 Regular
Level 4 10 v12, v22 18 Regular, Hyper
(v33) 11 v13, v21 15 Pre

12 v12, v21 14 Regular, Hyper

purpose, we first consider how the four main classes (Regular male, Regular female,
Hyper and Pre) are distributed among the clusters. The average value calculated on
the ten conducted iterations of MV Split-Merge Clustering algorithm is 0.76. While
the corresponding value generated by the proposed MV Multi-Instance Clustering
is 0.895. We have also evaluated the two algorithms with the six blood pressure
levels (Levels 1 to 6) as main classes, where the score generated by the MV Multi-
Instance Clustering is 1.0 versus 0.65 for the MV Split-Merge Clustering algorithm.
TheMVMulti-Instance Clustering has demonstrated a better performance in the both
evaluation scenarios, i.e. it is able to detect more efficiently the correlations between
the current and new incoming data chunks. We have further used the adjusted Rand
Index [23] to determine the similarity between the partitions generated by MVMulti-
Instance clustering algorithm and benchmark clustering (used in [19]) as a function of
positive and negative agreements in pairwise cluster assignments. The average score
produced by the proposed algorithm is 0.99 versus 0.44 for the MV Split-Merge
Clustering.

We are interested in discovering the relationships among the views. Hence we
have specially studied patterns with length 2 or 3 in order to reveal correlations that
exist between two or three views. Closed patterns (see Section 3.3) have been used for
this purpose. We have generated closed patterns with support 10 (patterns that cover
≈ 2.5% of the data set) which resulted in 43 concepts of which 12 patterns show the
relationship between all the three views. Table 3 lists all 12 derived concepts from
the retrieved closed patterns as examples to study the relations among the views. The
generated closed patterns do not contain concepts where the blood pressure levels are
either 5 or 6. This could be due to the less number of instances in these clusters which
are 23 and 5, respectively (see Table 1).

It is interesting to notice that the first three top frequent patterns among the three
views (see rows 1, 2 and 5 in Table 3) represent typical categories in female popula-
tion: females of age between 20 and 39 (early adulthood) with Level 1 blood pressure
and normal weight; females in the same blood pressure and weight group, but in ado-
lescent age category (age less than 20); and females again in early adulthood and

101

normal weight category, but Level 2 blood pressure. In comparison with these cat-
egories, the three least frequent concepts (see rows 4, 8 and 9 in Table 3) can also
be considered. For example, rows 8 and 9 represent respectively, overweight males
and normal weight females in early adulthood age category with Level 3 blood pres-
sure. One can get further insight into the discussed concepts by analyzing frequent
concepts that connect two views (not included in Table 3). For example, it can be
observed that females in their early adulthood typically have normal weight. This is
demonstrated by a concept with support 104. Females in this age group are less likely
to be overweight (31 individuals) or underweight (11 individuals) since only small
size concepts supports this. In addition, the individuals in this female age category
are less likely to be obese as there is no concept with size above 10 to support this.

5.2.2 Real-world sensor data:
This data can be used for modelling, understanding and monitoring the control valve
system behaviour. For example, it would be useful if one can link or trace back certain
performance to specific operational modes by taking into account the influence of
contextual factors (e.g., outdoor temperature). Initially, the available data features
are partitioned in three distinctive views as it is explained in Section 5.1.2. For each
view averaged daily values of the corresponding features are calculated to build daily
profiles. The created daily profiles (361 in total) are then split into two parts in order
to simulate two data chunks: the initial one with 243 daily profiles (January - August)
used to build the system behaviour model and the new data chunk used for the model
update contains 118 daily profiles (September - December).

Table 4: Closed patterns correlating all three views after the new data chunk is added

S/N PHL SST SRT VOM VOS SE OTM OTS Month Size
1 2.42 26.24 26.01 0.03 ±0.06 58 21.34 ±0.48 6, 7, 8 36
2 4.39 27.41 26.61 3.25 ±1.13 68 17.77 ±0.46 6, 7, 8 55
3 5.54 28.13 26.93 4.76 ±1.16 76 16.13 ±0.35 9 12
4 7.45 29.70 28.15 6.34 ±0.99 77 15.45 ±0.50 5 14
5 3.00 31.35 29.30 7.05 ±1.09 86 13.48 ±0.56 4 9
6 13.26 35.90 32.36 11.87 ±0.65 87 10.65 ±0.44 9 11
7 15.65 37.01 33.58 12.18 ±0.41 92 9.48 ±0.30 10, 11 13
8 16.74 37.81 33.61 12.85 ±0.60 91 9.17 ±0.49 5 12
9 3.36 41.61 35.33 14.99 ±0.63 95 6.19 ±0.44 3, 4 40

10 20.93 43.13 37.86 13.26 ±0.45 95 5.30 ±0.34 10, 11 32
11 20.75 43.68 38.36 13.23 ±0.45 95 4.81 ±0.30 12 16
12 37.45 47.36 38.29 17.37 ±0.42 96 1.17 ±0.40 3 11
13 42.54 48.20 38.49 18.04 ±0.54 96 0.46 ±0.33 1,2 54

Total 315

Note. The unit for PHL is kW and for SST, SRT, OTM, and OTS is ◦C. VOM,
VOS, and SE are expressed in %. For the full form of each feature see Table 2.
Row enumerations in bold italic represent patterns repeated from the initial
chunk. The bold in PHL column represents deviating behavior.

Initial clustering in views 1 and 2 is done by applying k-means. Silhouette index
and elbow method are used to find the optimal number of initial clusters. In the
initial data chunk, the optimal number of clusters in these two views are 3 and 4,
respectively. In the second data chunk, the optimal number of clusters for view 1 is

102

4 while for view 2 is the same as in the initial chunk, i.e. 4. In view 3, the data points
are grouped into 4 clusters according to the yearly seasons based on [24], i.e. the
context view has the following four clusters: December to February (winter); March,
April, October and November (early spring, late autumn); May and September (late
spring, early autumn); June to August (summer). After applying MVMulti-Instance
clustering algorithm to update local models the number of clusters in the three views
are 5, 5 and 6, respectively.

In order to analyse how the correlations among the views are updated, the global
model built on the initial data chunk is compared with the one produced on the up-
dated clustering solutions when the new data chunk is added. The lattice built on the
initial local models generated 32 non-empty concepts and 14 concepts connecting
all the three views. The new global model produced on the updated local models,
after the new data chunk has arrived, contains 59 non-empty concepts from which 26
concepts connect all three views. We further compare the sets of closed patterns pro-
duced by the corresponding formal contexts using one and the same support (≈ 2.5%
of the data set). The latter gives 18 concepts (support 6) connecting two or three views
for initial data chunk and 32 concepts (support of 9), respectively on the second for-
mal context. Table 4 lists all 13 concepts linking three views extracted after adding
the new data chunk. Each concept is presented by its mean vector and additionally,
the concepts are grouped into two groups with respect to the contextual view, i.e.
average outdoor temperature above and below 10 ◦C. It is interesting to notice that
8 (rows 1, 2, 4, 5, 8, 9, 12 and 13) of these 13 concepts have been discovered by
analysing the initial data chunk and they are the only discovered concepts with the
same support linking the three views. By considering the concepts linking two views
we observe that they are retained in the global model built on the new data chunk and
are further expanded with data points from its. Evidently, the integration procedure
of our algorithm demonstrates to have a stable behaviour with respect to discovered
patterns. Five new patterns presented in the new data chunk have also been extracted,
i.e. the proposed algorithm can be used as a continuous data mining technique. The
newly discovered patterns may be labelled with the expected performance under a
particular context. In addition, our results are comparable to the ones reported in [22],
where 49 days in March and April have been marked as having deviating behaviour.
Our algorithm presents those with two different concepts (5 and 9 in Table 4), both
of which show sudden drop in PHL with respect to the other concepts in the same
contextual group.

6 Conclusion and Future Work
In this study, we have proposed a novel multi-view clustering approach, entitled MV
Multi-Instance Clustering, that uses average Hausdorff distance, closed patterns and
Formal Concept Analysis for analysis of streaming data. The MV Multi-Instance

103

Clustering allows for parallel monitoring of the individual view clustering models
and analysing view correlations in the global model generated at each data chunk.

The proposed algorithm has been evaluated on two different data sets. In addi-
tion its performance has been benchmarked to MV Split-Merge Clustering. The MV
Multi-Instance Clustering has outperformed the latter algorithm in the studied evalu-
ation scenarios. In general, the obtained results have demonstrated that the proposed
algorithm is a robust technique for modelling and continuous analysis and mining of
streaming data.

The potential of the MV Multi-Instance Clustering has been demonstrated on
real-world data from smart building domain. Our future aim is to pursue further eval-
uation and study whether the proposed approach is fit for other real-world distributed
streaming scenarios.

References
[1] L. Fu, P. Lin, A. V. Vasilakos, and S.Wang. “An overview of recent multi-view

clustering”. In: Neurocomputing 402 (2020), pp. 148–161. ISSN: 0925-2312.
DOI: https://doi.org/10.1016/j.neucom.2020.02.104.

[2] L. Huang and et al. “MVStream:MultiviewData StreamClustering”. In: IEEE
Transactions onNeural Networks and Learning Systems 31.9 (2020), pp. 3482–
3496.

[3] W. Shao and et al. “Online multi-view clustering with incomplete views”. In:
2016 IEEE Int. Conf. on Big Data (Big Data). 2016, pp. 1012–1017.

[4] Y. Yang and H.Wang. “Multi-view clustering: A survey”. In: Big Data Mining
and Analytics 1.2 (June 2018), pp. 83–107. ISSN: 2096-0654.

[5] X. Liu and et al. “Late Fusion Incomplete Multi-View Clustering”. In: IEEE
Trans. on Pattern Analysis and Machine Intelligence 41.10 (2019), pp. 2410–
2423.

[6] Y. Ye and et al. “Incomplete Multiview Clustering via Late Fusion”. In: Com-
putational Intelligence and Neuroscience 2018 (Oct. 2018), pp. 1–11.

[7] M. Bendechache andM.-T. Kechadi. “Distributed clustering algorithm for spa-
tial data mining”. In: 2015 2nd IEEE ICSDM (2015).

[8] W.Gan and et al. “Datamining in distributed environment: a survey”. In:Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery 7.6 (2017).

[9] M. Hai and et al. “A Survey of Distributed Clustering Algorithms”. In: 2012
Int. Conf. on Industrial Control and Electronics Engineering. 2012, pp. 1142–
1145.

104

https://doi.org/https://doi.org/10.1016/j.neucom.2020.02.104

[10] D. Singh and A. Gosain. “A Comparative Analysis of Distributed Clustering
Algorithms: A Survey”. In: 2013 Int. Symp. on Comp. and Business Intellig.
2013, pp. 165–169.

[11] B. Jiang and et al. “Evolutionary multi-objective optimization for multi-view
clustering”. In: 2016 IEEE CEC 2016. 2016, pp. 3308–3315.

[12] J. Liu and et al. “Multi-view clustering via joint non-negative matrix factor-
ization”. In: Proceedings of the 2013 SIAM International Conference on Data
Mining, SDM 2013. 2013, pp. 252–260.

[13] M. Zhang and Z. Zhou. “Multi-instance clustering with applications to multi-
instance prediction”. In: Applied Intelligence 31 (2009), pp. 47–68.

[14] G. Edgar.Measure, Topology, and Fractal Geometry, 3rd. edn. Springer, Berlin,
1995.

[15] J. Wang and J.-D. Zucker. “Solving the multiple-instance problem: a lazy
learning approach”. In: Proc. of the 17th ICML. 2000, pp. 1119–1125.

[16] B. Ganter, G. Stumme, and R. Wille. “Formal Concept Analysis: Foundations
and Applications”. In: LNAI, no. 3626, Springer-Verlag, 2005.

[17] R. Agrawal and R. Srikant. “Mining sequential patterns”. In: Proc. of the 11th
Int. Conf. on Data Engineering. IEEE. 1995, pp. 3–14.

[18] J.Wang and J. Han. “BIDE: efficient mining of frequent closed sequences”. In:
Proceedings of the 20th International Conference on Data Engineering. 2004,
pp. 79–90.

[19] V.M. Devagiri, V. Boeva, and E. Tsiporkova. “Split-Merge Evolutionary Clus-
tering for Multi-View Streaming Data”. In: Procedia Computer Science 176
(2020), pp. 460–469.

[20] V. Boeva and et al. “Bipartite Split-Merge Evolutionary Clustering”. In:Agents
and AI. Ed. by J. van den Herik and et al. Springer, 2019, pp. 204–223.

[21] H. F. Golino, L. S. de Brito Amaral, S. F. P. Duarte, and et al. “Predicting
Increased Blood Pressure Using Machine Learning”. In: Journal of Obesity
2014 (2014).

[22] A. Eghbalian and et al. “Multi-view Data Mining Approach for Behaviour
Analysis of Smart Control Valve”. In:Proc. of 19th IEEE ICMLA. 2020, pp. 1238–
1245.

[23] W. M. Rand. “Objective Criteria for the Evaluation of Clustering Methods”.
In: Journal of the American Statistical Association 66.336 (1971), pp. 846–
850. ISSN: 01621459.

[24] H. Gadd and S. Werner. “Heat load patterns in district heating substations”. In:
Applied Energy 108 (2013), pp. 176–183. ISSN: 0306-2619.

105

Paper IV
Multi-View Data Analysis Techniques
for Monitoring Smart Building Systems

Vishnu Manasa Devagiri, Veselka Boeva, Shahrooz Abghari, FarhadBasiri,
Niklas Lavesson
In: Sensors 21, 2021, DOI: 10.3390/s21206775

Abstract

In smart buildings, many different systems work in coordination to
accomplish their tasks. In this process, the sensors associated with these
systems collect large amounts of data generated in a streaming fashion,
which is prone to concept drift. Such data are heterogeneous due to the
wide range of sensors collecting information about different characteris-
tics of the monitored systems. All these make the monitoring task very
challenging. Traditional clustering algorithms are not well equipped to
address the mentioned challenges. In this work, we study the use of MV
Multi-Instance Clustering algorithm for multi-view analysis and mining
of smart building systems’ sensor data. It is demonstrated how this al-
gorithm can be used to perform contextual as well as integrated analysis
of the systems. Various scenarios in which the algorithm can be used
to analyze the data generated by the systems of a smart building are ex-
amined and discussed in this study. In addition, it is also shown how
the extracted knowledge can be visualized to detect trends in the sys-
tems’ behavior and how it can aid domain experts in the systems’ main-
tenance. In the experiments conducted, the proposed approach was able
to successfully detect the deviating behaviors known to have previously
occurred and was also able to identify some new deviations during the
monitored period. Based on the results obtained from the experiments,
it can be concluded that the proposed algorithm has the ability to be
used for monitoring, analysis, and detecting deviating behaviors of the
systems in a smart building domain.
Keywords: evolutionary clustering, multi-view clustering, multi-instance
learning, closed patterns, streaming data, formal concept analysis, smart
buildings

107

1 Introduction
The domain of smart buildings is growing rapidly these days. Today’s buildings
are equipped with various smart and automated systems such as heating, ventilation,
and air conditioning; smart lighting; shading; etc. In order to accomplish the desired
functionality, these systems work collectively. Buildings in today’s urban societies
generate up to 40%of the total carbon dioxide emissions [1, 2]. Alongwith helping us
in our everyday activities, smart systems also play an essential role in energy-saving
[1]. The majority of the energy used in these systems is wasted due to operational
problems [3]. It therefore becomes appealing to be able to understand, analyze, and
monitor the behavior of such systems. Smart buildings are equipped with multiple
sensors used to facilitate operations and monitor the systems continuously. These
sensors collect a large number of heterogeneous data, which becomes difficult to
interpret and analyze. The heterogeneous nature of the data can be linked to a wide
range of sources or sensors from which they are collected.

There have been many studies, for example, as shown by the reviews of Farzaneh
et al. [1] for a wider area of smart buildings and by Mbiydzenyuy et al. [4] in district
heating (DH), that utilize data mining and Machine Learning (ML) to analyze and
interpret this large amount of data. Data generated from the sensors have specific
characteristics such as heterogeneity, streaming nature, concept drift, etc. that need
to be considered during analysis. In addition to the data characteristics stated above,
another common hindrance for interpreting real-world data is that they are often not
labeled. In order to cope with unlabeled data, unsupervised ML techniques such as
clustering analysis can be used. Clustering analysis is the task of grouping data in-
stances based on their similarities into few clusters. Traditional clustering algorithms
do not address all the challenges stated, and this calls for a need to develop novel hy-
brid approaches.

This study demonstrates how the MV Multi-Instance Clustering (MV-MIC) al-
gorithm [5] can be successfully used to analyze and interpret the data in the smart
building domain. As the name suggests, the proposed algorithm can address chal-
lenges that both multi-view (MV) and stream clustering algorithms can. An MV
clustering analysis approach is used to find a consensus clustering solution to group
data from across different sources, where each source represents a different perspec-
tive or view of the monitored phenomenon. The MV essence of the used stream
clustering algorithm helps in addressing challenges such as heterogeneity, streaming
nature of sensor data, concept drift phenomenon, and non-labeled data. As stated be-
fore, many smart building systems work in coordination, and it is essential to analyze
them together. The proposed algorithm can analyze a single system and preform an
integrated analysis of two or more systems. Therefore, the flexibility of the algorithm
makes it suitable for monitoring different contexts.

The main contributions of this study can be summarized as follows. This study
proposes and analyzes different approaches for successful monitoring and analysis

108

of smart building systems. The proposed context-aware approach analyzes and mon-
itors the systems by taking the contextual circumstances into account. In comparison,
the other proposed technique, namely integrated system analysis, allows monitoring
and analyzing a system in integration with other systems, which is very useful in a
domain such as smart buildings where different systems work in coordination. The
benefits of using visual data mining are also highlighted. Different visualization tech-
niques for easy interpretation of results generated at each stage of the algorithm are
proposed. These visualizations help domain experts to understand the results, moni-
tor any changes in the system, identify the correlations between different views, and
detect system failures. Based on the results obtained from the experiments, it can be
stated that the proposed approach can be used for continuous monitoring and analysis
of the systems in the smart building domain.

The rest of the paper is organized as follows. Section 2 gives an overview of the
concepts and methods used in the study. It is followed by Section 3, which presents a
brief overview of the related research. Section 4 describes the data used and an MV
data analysis approach and introduces visualization techniques proposed in the article.
This is followed by Section 5, which provides information about data preparation,
experiments, and results. Finally, Section 6 presents the applicability and limitations
of the study, and Section 7 is devoted to the conclusion and future work.

2 Background
This section introduces and presents a brief overview of various concepts used in the
study and the areas related to them. Sections 2.1 and 2.2 describe clustering algo-
rithms under which the proposed algorithm can be classified. In Section 2.3, Multi-
Instance learning, a type of learning technique that is used in the study, is introduced.
This is followed by providing an introduction to distance measures in Section 2.4,
used to measure how close two clustering solutions are. Finally, formal concept
analysis and closed patterns, which are used in the final phase of the algorithm, are
described in Sections 2.5 and 2.6 respectively.

2.1 Multi-View Clustering
InMVdata, a single data point can be represented in different perspectives or views [6].
Such data are generally acquired from a wide range of sources, are heterogeneous,
and usually complement each other. For example, an image and a text describing the
same situation can be considered as its two views. Alternatively, a single operation
of a system in a smart building domain can be analyzed using different perspectives
such as contextual conditions, performance indicators, and operational characteris-
tics. MV clustering is a technique in which the complementary knowledge from
different views is extracted, and a model representing all the views is obtained [7].

109

2.2 Stream Clustering Algorithms
Clustering techniques have been traditionally used to categorize data with similar
characteristics into a group. Data points belonging to the same cluster are identical
to each other and different from those grouped into other clusters.

Stream clustering algorithms belong to a sub-branch of clustering algorithms that
deal with streaming data. Stream refers to infinite, non-stationary data that are con-
tinuously generated. As the data generation occurs at a high pace, it is impossible
to do random access or store all the incoming data [8]. Streaming data are generally
not labeled, and hence clustering is one of the most suitable learning techniques for
it [9]. Due to the nature and volume of the data generated, stream clustering algo-
rithms should be capable of performing the task considering the memory and time
constrains. Apart from these, concept drift is one of the main challenges to be ad-
dressed in data stream clustering [9], a phenomenon where the data characteristics
tend to change over time. A stream clustering algorithm should be able to adapt to
these changes for better results. According to Wadewale et al. [10], drifts can be
categorized into six different types, namely sudden, incremental, gradual, recurring,
blip, or noise.

2.3 Multi-Instance Learning
Multi-Instance (MI) learning is a learning technique in which each data object is a
bag consisting of a set of data instances, unlike the traditional learning techniques,
where a data object is one data instance [11]. In supervised MI learning, the whole
bag is labeled. For example, a picture consisting of both water and sand is labeled
as a beach. MI learning has various applications ranging from image classification
based on the content [12] to the diagnosis of a disease based on images [13].

Multi-Instance Clustering
MI clustering is considered as an unsupervised MI learning, where the data objects
are unlabelled bags of instances. Two main advantages of MI clustering over super-
vised MI learning are that (1) data obtained in many real-world scenarios are not
labeled, and it is generally costly to obtain the labels for bags; (2) just like traditional
clustering, it is capable of detecting the inherent structure of the data [14]. Even
though MI clustering has some similarities with the general clustering algorithms, it
cannot be viewed entirely like them. Unlike traditional algorithms, where a single
instance is considered as a data object, MI clustering considers a bag of instances. As
different instances might show distinct functionalities, it is essential to take into con-
sideration the behavior and relationships of the instances in the bags while grouping
the bags into clusters [14].

110

2.4 Distance Measures
In clustering analysis, different types of distance measures are applied during the
modeling phase to find the similarity between the instances. Some of these, such
as Euclidean and Manhattan distances, are commonly used for traditional single in-
stance clustering methods. These metrics are not suitable for MI learning as the
instances are handled as a set of bags. A new distance metric, Hausdorff distance, is
proven to be more efficient in these scenarios [14–16].

Hausdorff Distance
Maximal Hausdorff distance [15], minimal Hausdorff distance [16], and average
Hausdorff distance [14] are different kinds of Hausdorff distances presented in the
literature. Maximal Hausdorff distance is initially used to measure the distance be-
tween two bags in [15] and later on applied to MI learning. Zhang et al. [14] pro-
pose average Hausdorff distance, as the other two metrics have not proved to work
well in most MI learning problems. Outliers can affect the maximum Hausdorff dis-
tance, while minimal Hausdorff distance may be sensitive to the distance between
the nearest pair of instances in two bags [14]. Therefore, average Hausdorff distance
is considered in the study. Average Hausdorff distance can be calculated using the
following formula:

H(I, J) =
∑

i∈I minj∈J dist(i, j) +
∑

j∈J mini∈I dist(i, j)
| I | + | J |

. (IV.1)

In the above equation, I and J represent bags of instances, and dist(i, j) is the
Euclidean distance between instance i from bag I and instance j from bag J .

2.5 Formal Concept Analysis
Formal Concept Analysis (FCA) [17] is a process for extracting concept hierarchy
from a set of objects described by their properties. FCA supplies the user with means
for building and visualizing the concept hierarchies, which groups objects and prop-
erties concurrently. Hence, it can be considered a conceptual clustering method and
is used in various fields of data mining, information retrieval, and knowledge discov-
ery.

FCA builds a formal context and derives a concept lattice from it. The formal
context is a table where the rows correspond to the set of objects O and the columns
correspond to the set properties or attributes A that the objects can possess. If an
object possesses a property, then it is represented by a cross in the table. It is a binary
relation defined on the Cartesian product O ×A.

The concept lattice is a hierarchical structure composed of formal concepts. Each
concept is a pair of objects and the properties shared by them. A concept can be

111

represented using a pair (X, Y), where X is a subset of objects and Y is a subset of
attributes (properties); the objects in the concept share these properties and vice versa.
In the concept lattice hierarchy, for each concept, there exists a super-concept and
sub-concept. Concepts1, a python module containing the implementation of FCA, is
used.

2.6 Closed Patterns
Given a sequence database, sequential pattern mining is defined as the problem of
finding regularly reoccurring ordered patterns [18]. A pattern is frequent if it has
a support greater than or equal to the chosen support threshold. For a sequential
database T and pattern P , support of P is the number of times P occurs in T . In
larger databases, theremight bemany frequent patterns that can be difficult to analyze.
In such cases, it is advantageous to use closed patterns. A pattern P is said to be a
closed pattern if it satisfies the following two criteria:

1. It is a frequent pattern.

2. There is no super pattern with the same support as P .

BIDE [19], a famous frequent closed sequential pattern mining algorithm, is
used to extract patterns. The python module prefixspan2, which has the BIDE im-
plemented, is used in the study.

3 Related Work
There are many recent studies in the field ofMV clustering. These include surveys [6,
20, 21] that summarize the work done or articles proposing novel algorithms [7, 22–
25] to address the challenges in the field. While Fu et al. [6] have compared the per-
formance of the selected MV clustering algorithms on real-world data sets, Yang et
al. [21] and Chao et al. [20] have categorized theMV clustering algorithms into differ-
ent categories. In [21], categorization is based on principles and mechanisms used in
the algorithms, whereas in [20], clustering algorithms are grouped into either genera-
tive or discriminative clustering. In addition, in [20], the authors have also connected
MV clustering to other related areas and listed out potential open problems in the area.
Huang et al. [7] in their recent study propose a novel MV clustering algorithm based
on co-clustering and bipartite graphs. The authors of [22, 23] have proposed algo-
rithms that are capable of handling incomplete or missing data in the views. Jiang et
al. [24] in their work have considered MV clustering as a multi-objective optimiza-
tion problem and compared how five multi-objective evolutionary algorithms work

1https://pypi.org/project/concepts/0.9.1/, accessed on 30 July 2021
2https://pypi.org/project/prefixspan/, accessed on 30 July 2021

112

https://pypi.org/project/concepts/0.9.1/
https://pypi.org/project/prefixspan/

for the considered problem. In cite [25], non-negative matrix factorization is used to
cluster data across the views.

Compared to the field of MV clustering, MV stream clustering is still in its early
stages [26, 27]. However, it is gaining more prominence due to large amounts of
streaming data being generated across diverse fields. MV stream clustering algo-
rithms are designed to address streamed and multi-viewed data challenges, such as
data generation at a high pace and volume, heterogeneity, and concept drift. The
authors of [26, 27] propose novel algorithms to address the challenges in the field.
In [27], the authors use non-negative matrix factorization for incomplete data sets,
whereas [26] propose an algorithm based on support vectors.

Artificial intelligence methods, especially ML techniques, are used in the smart
building domains for various monitoring, analysis, prediction, and outlier detection
tasks to achieve the desired final outcome in terms of energy efficiency, cost reduc-
tion, etc. Jafari-Marandi et al. [2] in their work propose a self-organizing map cluster-
ing algorithm, distributed decision model, and a homogeneity index used to evaluate
the clusters. The algorithm clusters buildings based on their energy profiles. Such
clustering can help reduce primary energy consumption. They use the distributed
decision model for operational decisions on the building clusters.

Several studies are focused on the DH network, where the produced heat from
the primary side is used for heating and supplying domestic hot water to buildings
connected to the network [4, 28, 29]. For example, Mbiydzenyuy et al. [4] review
the current state-of-the-art works related to the use of ML in the DH domain. The
authors highlight the need for ML to plan, monitor, optimize, and control these sys-
tems. They have also listed some goals that needs to be accomplished to increase
the impact of ML in the DH domain. Barriers that can hinder the achievement of
these goals and ways to overcome them are also stated. Abghari et al. [28] propose
an MV clustering approach to identify sub-optimal behaviors of DH substations by
considering their geographical locations. The proposed method offers two different
analyses, namely step-wise and parallel-wise MV clustering. The step-wise analy-
sis performs a hierarchical clustering based on different feature sets considered in
each view. Whereas in the parallel-wise analysis, clustering solutions built upon two
views are compared to determine the similarities and variations. Theusch et al. [29]
present an ML pipeline using clustering and regression analyses for monitoring and
fault detection in DH substations using smart meter data. The authors also identify
two key performance indicators, primary return temperature, and the difference of
primary supply and return temperatures.

Eghbalian et al. [30] study the heating system, which is part of a Heating, Ven-
tilation, Air Conditioning, and Refrigeration (HVAC&R) system in a smart building
domain. They propose an MV data analysis method for monitoring the smart control
valve system, which is a part of the heating system. The proposed approach was able
to detect deviating behavior successfully. Shchetinin [31] uses clustering to be able
to forecast electricity consumption by building consumer profiles. Smart meter data

113

are used to build the profiles.
There have not been many works using MV stream clustering to analyze and/or

monitor system behavior in the domain of smart buildings. This work attempts to
bridge this gap.

4 Materials and Methods
This section describes data analysis, visualization, and pattern mining methods pro-
posed in this article. Section 4.1 provides information about the data used for evalu-
ation purposes. The remaining two subsections are devoted to advanced methods for
MV integration analysis and continuous pattern mining of smart systems sensor data.
Section 4.2 discusses a method of context-aware modeling of system behavior and
integration analysis of its performance, while Section 4.3 deals with the visualization
and pattern mining.

4.1 Data
In this study, real-world sensor data are used to evaluate the performance of the MV-
MIC algorithm, [5] in the field of smart buildings. Data used are obtained from a
company based in Stockholm, Sweden. In the smart buildings domain, many systems
work together. One of these systems, HVAC&R, is considered in the study. The
primary focus is on the heating and tap-water sub-systems. The data used in this
study belong to a health-care building located in Stockholm, Sweden. It is a three-
storey building which has approximately 2100 m2 floor area. More details about the
sensors from which the data are collected and the features included in the study can
be found in Section 5.2, where the experimental scenarios are discussed.

4.2 Multi-View Data Analysis Approach
The work of smart systems is often monitored by multiple sensors, each capturing
a different factor of operational or contextual circumstances, due to which the data
have a heterogeneous nature and provide different perspectives (views) about the
studied system. Modeling the behavior and analyzing the performance of such smart
systems are often very complex and can be computationally demanding. All these
make the monitoring task very challenging, requiring ML and data mining models
that are not only able to continuously integrate and analyze MV streaming data, but
also are capable of adapting to concept drift scenarios of newly arriving data.

4.2.1 Context-Aware Modeling of System Behavior
MVMulti-Instance Clustering is an MV stream clustering algorithm that is proposed
in [5]. The MV-MIC algorithm can simultaneously monitor the local clustering mod-

114

els in each view and build an integrated global model, which can be used to find the
correlations between the views. The proposed algorithm can continuously monitor
and analyze the streaming data. When a new data chunk arrives, the clustering mod-
els in each view are updated using Bi-correlation MI clustering. This is followed by
building a global model that consists of formal context and a formal concept lattice.
MV-MIC takes advantage of extracting closed patterns to obtain the most frequent
correlations between the views. The global model built by using FCA helps in ana-
lyzing and comparing the correlations between different views of consecutive data
chunks.

In this section, we consider and demonstrate how the MV-MIC can be used for
context-aware modeling and analysis of smart building system behavior and perfor-
mance. Each system of the smart building can be monitored from different perspec-
tives or views. Sensors are used to collect a large volume of valuable data about
the system operation, context, and performance. For example, different contextual
factors such as outdoor temperature, the social behavior of people, etc., can influ-
ence the system’s operating modes and performance. Evidently, to get a realistic
evaluation of the system’s behavior, its performance should be assessed by analyz-
ing its operation under different contextual factors, i.e., different perspectives should
be studied and linked. Such a division of the system’s characteristics will facilitate
the domain experts in better understanding how the system’s performance correlates
with its operating modes and is affected by different contextual circumstances.

Let us consider a streaming scenario where data are analyzed in chunks. That
is, each data chunk t contains N most relevant data characteristics of the monitored
system. These characteristics (attributes) are selected via a preliminary discussion
with domain experts. Hence, the data chunk corpus consists of N different data sets,
one per monitored characteristic, and each data set contains nt daily time-series pro-
files (measurements). Note that the data chunks can have different sizes; i.e., they
can contain different numbers of daily profiles. The available data attributes are fur-
ther analyzed together with the domain experts and are separated into different views
with respect to the information they provide about the monitored system. For exam-
ple, some parameters may be related to the system operating behavior (operational
parameters); others can present different kinds of contextual factors or define system
performance indicators. Note that in our description hereafter, system’s operational,
contextual, and performance characteristics are denoted by views 1, 2, and 3, respec-
tively.

At each newly arrived data chunk t, the approach performs three distinctive steps
as illustrated in Figure 1:

115

Figure 1: A schematic illustration of different steps of the MV-MIC algorithm.

Step 1: Update local clustering models

a) Initially, for each view i (i = 1, 2, 3), integrated daily profiles are created
by using the view attributes (Ni in total); i.e., each integrated daily profile
is a Ni-dimensional vector that consists of the aggregated values of the
features (attributes) of view i (i = 1, 2, 3).

b) A local clustering model Ct
i (i = 1, 2, 3) is produced at each data view.

c) A clustering model Ct−1
i (i = 1, 2, 3) built at previous data chunk t− 1

is updated by the corresponding model (Ct
i) produced on the new data

chunk by applying the Bi-correlation MI clustering algorithm [5].

Step 2: Build a formal context

A formal context matrix F t, which consists of all MV patterns supported
by the updated clustering solutions, is built. Each row j (j = 1, 2, . . . , (nt−1+
nt)) of F t is a K-length binary vector, where K = k1 + k2 + k3, and
ki (i = 1, 2, 3) is the number of cluster labels in the updated clustering
solution of view i.

Step 3: Generate a global model

a) Closed (most frequent) patterns, denoted by F t
c , are extracted from F t.

These patterns present most typical current correlations among the three
views, i.e., those that are supported by the chunks t− 1 and t.

b) The set of the closed patterns F c
t is used to generate a concept lattice that

describes the hierarchical organization of the identified concepts.

116

The fourth step of the proposed MV analysis approach can be considered as the
post-analysis that can be conducted on the results produced by its application.

Step 4: Analysis
The produced global models can be used to study and analyze the system be-
havior and performance, e.g., by conducting some of the following:

a) Analysis of system behavior:
The extracted closed patterns (F t

c) can be studied to understand the cur-
rent behavior and performance of the system.

b) Identifying deviating behavior:
i. The patterns belonging to F t

c can be benchmarked to those available
in F t−1

c (i.e., the most typical patterns identified at the previous data
chunk t− 1) to discover deviating or unseen behavioral modes.

ii. The hierarchical relationships revealed by the concept lattices built
on F t

c and F t−1
c can also be studied for gaining additional insight

into the temporal behavior of the system.
c) Tracking back system behavior:

The system behavior can be studied and tracked back for a longer pe-
riod than two consecutive chunks by analyzing, e.g., the sets of extracted
closed patterns {F p

c | p = t, t − 1, . . . , t − q} (q ≥ 2) covering the
studied period.

4.2.2 Integration Analysis of System Performance
A smart building uses various technologies to optimize the building’s performance
and energy efficiency by sharing information about what goes on in the building
between systems. This information is used to automate various processes, from
HVAC&R to lighting and security. The most fundamental feature of a smart building
is the interconnections of its core systems.

In this section, we propose and discuss the extension of the MV-MIC approach to
conduct integration analysis of few different systems that together realize the func-
tionalities of a smart building system. The ability to conduct integrated analysis
benefits the understanding of the correlations between different views of the systems
involved and how these affect the performance or behavior of a larger system (for ex:
HVAC&R) in consideration.

As stated, a smart building has various systems that work both individually and in
integration with other systems. Each system can further have multiple sub-systems
performing their own designated task or collaborate with other systems. For exam-
ple, in the HVAC&R, which is responsible for heating, including hot water system,
ventilation, air conditioning, and refrigeration, a designated sub-system is responsi-
ble for each of these. The contextual conditions such as outdoor temperature and

117

inhabitant behavior are the same for all these systems, influencing their performance.
Note that more number of inhabitants yields increased hot water consumption and
demands for higher ventilation. As an illustration of how the systems work in co-
ordination with the selected HVAC&R system, let us consider the operation of the
hot tap-water system (hear after referred to as tap-water system), which is linked to
the heating system. Hot water returned from the heating system is transferred to the
tap-water system through a heat exchanger and used to heat the tap water. Suppose
this temperature received from the heat exchanger is insufficient. In that case, the
tap-water system opens one of its valves to release some more hot water to obtain the
desired temperature. Such interlinks can be seen among other systems as well. As
the systems work in coordination with each other, a better understanding of the sys-
tems’ operation can be obtained by applying flexible data analytic algorithms capable
of conducting integrated MV analysis of multiple systems. This integrated analysis
can help to identify behaviors that are challenging to detect when the systems are
analyzed individually.

The proposed MV-MIC algorithm perfectly fits into this role of an integrated
system analysis tool. It can be used to analyze each sub-system individually or in
combination with sub-systems with respect to different perspectives or views such
as operating modes, context, and performance. Figure 2 shows a high-level overview
of how the systems work in integration in a smart building. It can be seen that the
systems of a smart building can be represented using a hierarchical structure. After
the local models in each view are updated, one can dynamically decide and select
views to be analyzed further and find correlations between them. Then, the global
model is built using these chosen views. Note that Figure 2 is included only to illus-
trate how the systems of a smart building can be grouped together in a hierarchical
structure. Experiments in the current study are only conducted on the heating and
tap-water systems shown in the figure.

Assume that at data chunk t, the operation and performance of two linked sys-
tems, e.g., heating and tap-water (or heating and ventilation), are studied. These
systems work under the same exogenous circumstances. In this context, a few differ-
ent scenarios can be analyzed to understand and gain better insight into the systems’
integrated behavior:

A. Meta-integration analysis of two systems:
The MV-MIC algorithm, described in Section 4.2.1, can be applied individu-
ally to each system’s data. As a result, two sets of closed patterns linking the
three views’ of each system are extracted. These can be separately analyzed
for each system to understand the system behavior. In addition, the two sets of
extracted closed patterns can be aligned to each other with respect to the fea-
tures in the contextual view in order to identify some interconnections between
the systems affecting and explaining their performance.

118

Figure 2: Example of integrated systems in a smart building.

B. Inter-study integration analysis of two systems:
The two systems’ data views can be considered together, and the MV-MIC
algorithm can be used to analyze the systems. In this scenario, the extracted
closed patterns will represent integrated systems’ profiles linking operating
modes and performance of the two systems under the monitored contextual
conditions.

C. Integration analysis of selected views:
Selected views from the two systems can be analyzed together, e.g., only per-
formance indicators of heating and tap-watermay be considered. Such analysis
may reveal, e.g., how the performance of the tap-water system is correlated to
the heating system.

There are various advantages of using integration analysis. One can initially an-
alyze the sub-systems and then integrate them to obtain a full overview of the whole
system. It will enable us to utilize the benefits provided by the MV clustering com-
pletely. Considering sub-systems helps in identifying hidden cluster groups. Note
that there might be difficulty identifying proper clusters when the complete system
is studied due to the increased complexity of having many different types of hetero-
geneous features.

The proposed approach is capable of performing both horizontal and vertical inte-
gration of the knowledge obtained through the analysis of the systems. Vertical inte-
gration of the knowledge can be done when a new data chunk arrives; Bi-correlation
MI clustering is used to update the existing local clustering solutions based on the
newly arriving data. Horizontal integration can be done between different views and
sub-systems as per the requirement, e.g., see integration scenarios B and C above.

119

4.3 Data Visualization and Analysis
This section presents how theMV-MIC can be combinedwith different data visualiza-
tion techniques for facilitating continuous monitoring, analysis, and pattern mining
of smart building system behavior and performance. We demonstrate how different
visualization techniques could be used to better understand and monitor the system
performance and operation. The proposed new approach of continuous visual track-
ing for each data chunk helps to quickly identify and track the changes over time.

The amount of data generated by the smart building systems is enormous and dif-
ficult to interpret; this can be addressed using visual data mining [32]. Visualization
can be considered as a part of data mining and knowledge discovery [33]. It helps
in representation and eases the task of understanding a huge volume of data that are
difficult to present and analyze in a textual form [32, 34]. One of the significant ad-
vantages of visual exploration, as stated by Keim [34] is that it is capable of handling
heterogeneous and noisy data better than what statistical or ML techniques have to
offer. The paper proposes a visual data mining based approach to detect abnormal
behavior based on historical operational data.

In the current study, visualization is used to represent the outcomes of different
stages of the proposed algorithm. These visualizations can be used by domain experts
to better understand the operation and performance of the system.

4.3.1 Visualization of Results
As stated before, visualization increases the understandability of complex results.
In [32], the authors highlight the need for continuous visualization in a data mining
process. Inspired by this, we propose suitable visualizations of the results obtained
in each phase of the MV-MIC algorithm. This visualization facilitates the domain
expert in analyzing and better understanding the system behavior and performance
by presenting details that are not visible in the end results.

1. Visualization of local models:
Each local clustering model produced at Step 1 of the algorithm captures in-
formation about the most typical working/performing modes or conditions of
the studied system in the respective view. In order to facilitate the perception
of the information summarized in each local clustering model Ct

i (i = 1, 2, 3),
it can be visualized by a ki × Ni matrix that contains average values of the
corresponding view’s attributes w.r.t. the identified typical working scenarios
(clusters). The matrix can be colored by using different color intensities for
each row by taking into account the size of the cluster it presents; e.g., see
Table 3. Such colored matrices can be used to visually inspect the system’s
working scenarios in the different perspectives considered. This can further
facilitate the detection of deviating/underperforming scenarios by comparing
the local models built on two consecutive data chunks of the system. The data
presented in each matrix can also be sorted by a selected attribute, which can

120

further facilitate the analysis and understanding of the system behavior. For
example, Tables 3 and 8 can be ordered w.r.t. PHL and then aligned to each
other.

2. Visualization of formal context:
A formal context F t is built at Step 2 of the algorithm using the data points
of the current and previous chunks. Each data point of F t can be represented
(labeled) by a three-length vector (string) that contains the respective labels
from the three views’ local models. This can be used to visualize an extract of
m data points using an m×3 matrix (3 represents the number of views). Each
column of this matrix can be colored by the respective view color used in the
visualization of the view’s local model. In addition, each cell may have differ-
ent color intensity, similar to the local model matrices. Such visualization can
be used to study a specific period of the system work by allowing them to con-
duct higher-order comparison and analysis of the system’s daily behavior and
performance under the different contextual conditions in the studied period.
For example, two tables presenting, respectively, two consecutive weeks of
the system work can be visualized and studied by request, e.g., see the two ta-
bles in Table 6. These can reveal, e.g., that the system has moved in a different
operating mode in the second studied period (week), although the contextual
conditions and performance measures have not changed from the first week.
This may be an indication of a problem and can be further studied by the do-
main experts. Note that the above tables can also be sorted w.r.t. the labels in
a column by choice, which can further facilitate the comparison.

3. Visualization of concepts linking three views:
A set of closed patterns F t

c is extracted from F t at Step 3 of the proposed ap-
proach. This set of closed patterns is used to build a concept lattice (global
model) at chunk t. The concepts linking three views can be presented in a
table similar to the one used for local clustering models, but containing aver-
age values of the attributes from all three views; e.g., see Table 7. In addition
to this table, a tripartite graph can be created to visualize the correlations be-
tween the three views’ clusters revealed by those concepts. A tripartite graph
Gt = (V t

1 , V t
2 , V t

3 , Et
12, Et

23) can be created for each data chunk t, where the
first three components (V t

1 , V t
2 and V t

3) are, respectively, the three vertex sets
of the graph and the remaining two (Et

12 and Et
23) are the edge sets. Note that

V t
i (i = 1, 2, 3) is the set of cluster labels of clustering solutionCt

i (i = 1, 2, 3).
Furthermore, Et

12 ⊂ V t
1 × V t

2 and Et
23 ⊂ V t

2 × V t
3 present, respectively, the

links between local models Ct
1 and Ct

2 and between Ct
2 and Ct

3, which are re-
vealed by the formal concepts of the global model. These edges, when consid-
ered together, also present the links between the local models of all three views.
For example, see Figure 4: the edge connecting nodes AO0, AC0, and AP 0 in

121

all three views. i.e., V t
1 , V t

2 , and V t
3 represent the correlation between these

three clusters from these views. The graph edges can have a different thick-
ness that reflects the size of the concept they present. Furthermore, the nodes
in the vertex sets can be colored by using the same color visualization idea
as the one applied for the local models. Such a graph visualization can facili-
tate the domain experts in getting an overall (at a higher level) understanding
of the system behavior and performance w.r.t. different contextual scenarios.
The comparison of two graphs produced on the data of two consecutive chunks
(e.g.,Gt−1 andGt) can provide information about newly appeared correlations
among the three main characteristics of the system.
In addition to the table and tripartite graph, each concept can be visualized by
plotting its performance mode feature values in a spider chart and further label-
ing the chart by selected parameters from the other two views (context and/or
operation). Such plots will facilitate the visual comparison of the different
concepts, e.g., on domain expert request, all heating season concepts can be
plotted and inspected.

4. Visualization of concept lattice:
The set of closed patterns F t

c can be used at Step 3 of the proposed approach
to generate a concept lattice. The latter can present a complex hierarchical
structure. Therefore, it is not considered very useful to visualize the whole
lattice. If needed, a sub-lattice can be visualized to illustrate further, e.g., the
links of specific three-view concepts with two-view concepts.

5 Experimentation and Analysis
This section presents the experimental scenarios investigated in this study along with
the results obtained, followed by a discussion. Section 5.1 presents the data pre-
processing steps. Section 5.2 describes the used experimental setup and discusses
the obtained results. Experimentation is done by considering the heating and tap-
water systems independently and together in an integrated scenarios.

5.1 Data Preparation
This section describes the data pre-processing steps used before the proposed MV-
MIC algorithm is applied. Each of these steps is applied to the newly arriving data
chunks.

5.1.1 Outlier Removal
Real-world data often contain data points with a deviating behavior known as outliers
or noise. Building a model with such data might negatively impact the performance

122

of the model. Sudden spikes or drops in the measurements can be smoothened us-
ing data smoothing techniques belonging to the Median Absolute Deviation (MAD)
family. In this study, a Hampel filter [35] is used to replace such outliers with a local
median of a sliding window of size k (7 in this case). Python module for Hampel
filter3 is used.

5.1.2 Data Cleaning
Some features in the data have missing values. In the heating or tap-water systems,
the values of each feature depends on various factors such as the current outdoor
temperature, building occupancy, ventilation, and tap-water usage, to name a few,
making it difficult to estimate the missing values correctly. Hence, the rows with
missing values are removed.

5.1.3 Data Division
Data over a period of two years (1 January 2019 to 31 December 2020) are used to
conduct the experiments. The streaming data set is divided into three chunks. One
year of data, that is, from 1 January 2019 until 31 December 2019 are considered as
chunk 1. The second-year data are divided into two chunks, i.e., 1 January 2020 until
30 of June 2020 is considered as chunk 2 and 1 July 2020 until 31 of December 2020
is considered as chunk 3. Daily profiles are used in the study as the hourly data are
sparse for some features.

5.1.4 Standardization
Each data chunk is standardized using z-score. Standardization of the features is
done by subtracting the mean value of the feature from each sample and dividing it
by the standard deviation of the feature. Equation IV.2 is used to calculate the z-score,
where x is the sample, u is the mean, and s is the standard deviation. StandardScaler
from the preprocessing module of python Scikit-learn [36] library is used to perform
the standardization.

z = x− u

s
. (IV.2)

5.1.5 Estimation of the Number of Clusters
In this study, k-means is used to initially cluster the data points in different views.
This partitioning algorithm requires k, the number of clusters to be known in advance.
Therefore, we take advantage of the Silhouette Index cluster validation method for
identifying the optimal number of clusters k.

3https://github.com/MichaelisTrofficus/hampel_filter, accessed on 5 July 2021

123

https://github.com/MichaelisTrofficus/hampel_filter

The Silhouette Index (SI) for clustering solution C of n objects is defined as:

s(C) = 1
n

n∑
i=1

(bi − ai)
max{ai, bi}

, (IV.3)

where ai represents the average distance of item i from all the other items in the
cluster to which the item i is assigned, and bi represents the minimum of the average
distances of item i from items of the other clusters.

5.2 Experimental Setup and Results
The proposed algorithm is suitable for various continuous data mining tasks such as
monitoring and pattern extraction at multiple levels (see Figure 2) of the smart build-
ing system. In this section, we demonstrate how the proposed algorithm could be
used for an MV data analysis of independent systems, scenario A, (Section 5.2.1), as
well as for an integrated system, scenario B, (Section 5.2.2) using different experi-
mental settings. More specifically, data from heating and tap-water sub-systems that
are part of the HVAC&R system are used for different experiments conducted in the
study. Figure 3 illustrates the HVAC&R system schematics, including the tap-water
(dashed purple rectangle) and heating (dashed blue rectangle) sub-systems.

Heat exchanger

Heat exchanger

Return from Heating Systems

SST

SRT

PHL

PST

PRT

VOM/
VOS

VOM2/
VOS2 TWIST TWFSTVOM3

TWRT

Hot Tap-water

Hot Tap-water circulation

TWV

Cold refill water

Heating Systems

Primary
supply

temperature

Primary
return

temperature

Figure 3: HVAC&R system schematics: dashed purple rectangle represents the tap-water sub-system, and
dashed blue rectangle represents heating systems.

5.2.1 Individual Analysis of Heating and Tap-Water Systems
In this set of experiments, the heating and the tap-water systems are individually
analyzed to observe their performance independently. These are used to find correla-
tions within the sub-system that are difficult to identify when analyzing an integrated
system.

124

Experiments on the Heating System This experimental scenario monitors the
heating system, which is part of an HVAC&R system. The experiment is designed
to help domain experts to better understand how the operational, performance, and
contextual characteristics affect each other. The system contains various sensors,
which are continuously collecting information. Thesemetrics are classified into three
views, representing the operation, performance, and context of the system. Details
about the features included in each of these views are presented in Table 1.

Table 1: Features used for monitoring the heating system.

View Id Feature Name Acronyms Units

Operation 1
Secondary Supply Temperature SST ◦C
Secondary Return Temperature SRT ◦C
Primary Heat Load PHL kW

Performance 2
Valve Openness Mean VOM %
Valve Openness Standard Deviation VOS %
Sub-station Efficiency SE %

Context 3
Outdoor Temperature Mean OTM ◦C
Outdoor Temperature Standard Deviation OTS ◦C

Note. Sub-station Efficiency (SE) is computed as the difference between primary sup-
ply temperature (PST) and primary return temperature (PRT) divided by the difference
between PST and secondary return temperature (SRT).

The system’s operational parameters include the secondary supply and return
temperatures, and primary heat load. The average valve openness and its standard
deviation together with sub-station efficiency are considered for measuring the per-
formance. For the contextual parameters, average outdoor temperature, along with
its standard deviation, are considered.

The proposed algorithm requires that the data in each chunk are initially clustered.
Initial clustering in the operating and performance views, that is, views 1 and 2, is
done using k-means. The optimal value for k is identified using SI. For the contex-
tual view (view 3), initial clustering is performed based on the seasons in a year as
proposed by [37]. The data are divided into four clusters, namely winter (December
to February), early spring and late summer (March, April, October, and November),
late spring and early autumn (May and September), and summer (June to August).
Details about the number of initial clusters in each chunk for different views can be
seen in Table 2.

Table 2: Initial number of clusters in three chunks for each view---Heating System.

Chunk View 1 View 2 View 3

1 5 3 4
2 7 3 4
3 4 3 4

Considering the chronological order in which the data arrive, MV-MIC is initially
applied on chunks 1 and 2. First, the local models in each view are updated using

125

the Bi-Correlation MI-Clustering, which produced 9, 4, and 5 clusters for views 1,
2, and 3, respectively. Overview of each of these clusters from different views can
be seen from Tables 3, 4, and 5. As stated in Section 4.3.1, these tables are colored
based on the size of the cluster and can be used for visualizing different working or
contextual modes in each of the views.

Table 3: Operating modes identified after receiving chunk 2.

Operating Modes (OM) PHL (kW) SST (◦C) SRT (◦C) Size
AO0 24.16 43.88 38.03 118
AO1 12.27 34.48 32.23 80
AO2 4.83 28.41 26.78 160
AO3 44.38 49.52 39.55 49
AO4 3.33 42.51 36.16 34
AO5 19.07 45.28 39.47 12
AO6 18.29 39.68 36.12 18
AO7 29.29 47.46 39.63 16
AO8 10.35 31.11 29.68 26

Table 4: Performance modes identified after receiving chunk 2.

Performance Modes (PM) SE (%) VOM (%) VOS (%) Size
AP 0 96 14.04 ±1.16 338
AP 1 70 0.95 ±0.08 45
AP 2 75 7.46 ±4.81 98
AP 3 76 6.97 ±4.43 32

Table 5: Contextual conditions identified after receiving chunk 2.

Contextual Conditions (CC) OTM (◦C) OTS (◦C) Size
AC0 2.57 ±1.18 131
AC1 6.53 ±1.97 168
AC2 19.41 ±2.91 122
AC3 13.20 ±2.39 61
AC4 11.73 ±3.27 31

After building a local model for each view, FCA is used to integrate them and
build the global model, which contains a formal context and concept lattice. The
concept lattice has 69 non-empty concepts. Among these, only 32 concepts connect
all three views. As stated in Section 4.3.1, visualization of the formal context can be
used to compare the system behavior at higher granularity, e.g., a day. To illustrate
this, two weeks of data are considered, where week one represents normal system
behavior, while week two contains abnormal and sub-optimal behavior. A gap of
one week is given in between to make sure that the normal and abnormal behaviors
do not coincide. Table 6 presents two weeks of data, that is, from 1 March 2019
to 7 March 2019 and 15 March 2019 to 21 March 2019, representing the system
performance in March-2019. From these tables, it can be observed that during week
two, the operating mode is always AO4, representing the deviating behavior, and a
sudden drop in PHL down to 3.33 kW (see Table 3). In comparison, the operating
modes for normal behavior during this time are either AO0 with an average PHL
equal to 24.16 kW or AO3 with an average PHL equal to 44.38 kW (the operating

126

modes identified between 1 March 2019 to 7 March 2019). The performance and
contextual modes during these weeks are identical. Such tables can help the domain
expert identify the issues (here with the features related to the operating mode) and
take timely action.

Table 6: Patterns representing the behavior of heating system between 1 to 7 March 2019 and 15 to 21 March
2019.

Date OM PM CC Date OM PM CC
1 March 2019 AO3 AP 0 AC1 15 March 2019 AO4 AP 0 AC1
2 March 2019 AO0 AP 0 AC1 16 March 2019 AO4 AP 0 AC1
3 March 2019 AO0 AP 0 AC1 17 March 2019 AO4 AP 0 AC1
4 March 2019 AO3 AP 0 AC1 18 March 2019 AO4 AP 0 AC1
5 March 2019 AO3 AP 0 AC1 19 March 2019 AO4 AP 0 AC1
6 March 2019 AO3 AP 0 AC1 20 March 2019 AO4 AP 0 AC1
7 March 2019 AO0 AP 0 AC1 21 March 2019 AO4 AP 0 AC1

Next, closed patterns are used to extract the most common or frequent behavioral
patterns. Support of ≈2.5% is used in this process, i.e., patterns that cover at least
2.5% of the data are considered to be frequent. There are 513 daily profiles in total
when both chunks 1 and 2 are considered. That is, concepts with a frequency of
at least 13 are considered. This gave us 31 concepts linking any two views and 11
concepts linking all three views. These 11 concepts are represented in Table 7 and
Figure 4. In Table 7, the data are sorted based on the OTM.

Table 7: Closed patterns fromglobalmodel showing correlations between all three views after receiving chunk
2.

S/N PHL SST SRT VOM VOS SE OTM OTS Size Months

6 3.37 26.85 26.60 0.00 ± 0.00 70 22.12 ± 3.01 40 [6--8]
10 4.99 29.14 26.68 6.53 ± 4.96 71 18.23 ± 2.59 62 [6--8]
1 4.75 26.59 26.25 5.60 ± 4.90 78 17.88 ± 3.79 19 [6]
2 6.6 29.75 27.02 8.47 ± 4.61 78 16.68 ± 2.19 21 [5, 9]
3 12.95 33.73 32.09 11.65 ± 1.30 88 11.12 ± 2.55 27 [5, 9]
5 12.9 35.28 32.87 11.87 ± 1.04 92 9.68 ± 1.96 34 [3, 4, 10, 11]
4 3.33 42.51 36.16 15.53 ± 1.55 96 5.47 ± 2.01 34 [3, 4, 11]
9 24.68 44.00 37.95 14.21 ± 0.99 99 4.41 ± 1.05 60 [1, 2, 12]
8 23.61 43.93 38.26 13.78 ± 0.88 97 4.40 ± 1.33 54 [3, 4, 10, 11]
0 29.62 47.69 39.75 15.16 ± 1.23 104 1.02 ± 1.85 14 [1, 2]
7 45.02 49.58 39.54 18.28 ± 1.61 100 −0.59 ± 1.20 42 [1, 2, 12]

Note. The unit for PHL is kW and for SST, SRT, OTM, and OTS is ◦C. VOM, VOS, and SE are
expressed in %. For the full form of each feature, see Table 1.

From Table 7 it can be observed that there is a sudden drop in the PHL for con-
cept 4, implicating a deviating behavior that matched with the prior information we
had regarding issues in the system during March and April 2019. This showcases
that the proposed algorithm is capable of detecting abnormal or deviating behaviors.
Concepts 9 and 8 are very similar but could have been interpreted as different con-
cepts because of the clustering in view 3, since the months in these concepts belong
to different initial clusters.

Figure 4 is a tripartite graph representing all 11 concepts linking three views that
are obtained after using closed patterns. This figure showcases the links between

127

all three views and gives the observer an easy understanding of how the views are
correlated. The edges of the graph are of varied thickness representing the size of
the concept. Concepts with greater size are represented by thicker lines showing a
stronger correlation between views, whereas the lighter lines imply that the consid-
ered concept is only supported by a few daily profiles, i.e., that the correlation is not
strong. For example, the first link in the figure represents a concept linking clusters
AO0, AC0, and AP 0 in views 1, 2, and 3, respectively. This is supported by a size
of 60 daily profiles. The link between clusters AO7, AC0, and AP 0 in views 1, 2,
and 3, on the other hand, is supported by a concept of size 14. One can also observe
from the tripartite graph that some views’ clusters do not take part in any of the three-
view concepts, e.g., clusters AO5, AO6, AO8, and AC4. These might be involved in
two-view concepts. It is interesting to notice that AO5 and AC4 are the smallest clus-
ters among the others in their local clustering models. AO6 and AO8 are also of the
smallest clusters in view 1.

Figure 4: Tripartite graph representing the relationships between different concepts after receiving chunk 2.
Color thickness of the edges correlates to the size of the concept.

When chunk 3 arrives, the local clustering models in each view are updated again.
The number of clusters in the updated local models are 8, 3, and 6 clusters in views
1, 2, and 3, respectively. These can be viewed in Tables 8, 9, and 10. When com-
paring the operating modes clusters between Tables 3 and 8, it can be observed that
in Table 3, operating mode AO4, which represents deviating behavior, can be con-

128

sidered as an additional mode. All the other modes except AO3 from Table 3 can
be compared to one of the modes listed in Table 8. That is, clusters BO2, BO3, and
BO5 from Table 8 are similar to clusters AO5, AO7, and AO8, respectively, from Ta-
ble 3. ClustersBO0, BO1, andBO4 in Table 8, on the other hand, are close to clusters
AO0, AO2, and AO1, respectively, from Table 3. It can be stated that when the local
models are updated, some clusters are retained while some are updated. For the per-
formance modes, the number of clusters are not evenly distributed, and a majority of
the instances are grouped into cluster BP 0 (see Table 9). In view 3, as stated before,
the clustering is done based on the seasons of the year, there are some new clusters,
some of them are retained while others are updated.

Table 8: Operating modes identified after receiving chunk 3.

Operating Modes (OM) PHL (kW) SST (◦C) SRT (◦C) Size
BO0 21.17 42.22 36.73 59
BO1 4.03 26.69 25.57 137
BO2 19.07 45.28 39.47 12
BO3 29.29 47.46 39.63 16
BO4 13.45 34.78 32.54 17
BO5 10.35 31.11 29.68 26
BO6 0.70 33.99 30.02 33
BO7 0.00 44.00 35.98 29

Table 9: Performance modes identified after receiving chunk 3.

Performance Modes (PM) SE (%) VOM (%) VOS (%) Size
BP 0 −23 9.12 ±1.33 308
BP 1 −2785 13.61 ±1.23 10
BP 2 2894 14.14 ±1.32 11

After the global model is built, initially, there are 48 non-empty concepts; among
these, 23 concepts connect all the three views. As the number of instances in chunks
2 and 3 combined is 329, support of 8 is used when extracting closed patterns. When
closed patterns are used to extract the most frequent patterns, 32 concepts connect-
ing any two views and 14 concepts connecting all the three views are obtained. The
latter are represented in Table 11. From this table, deviating behavior is seen in con-
cepts 3, 4, 9, and 10, where the PHL shows a significant difference from its original
pattern. Furthermore, it is interesting to note that all these concepts show deviating
behavior with respect to SE. As one can observe, SE in concepts 3, 9, and 10 is neg-
ative, while in concepts 4 and 11, it has unexpectedly high (2852%) and low (21%)
values, respectively. These results were discussed with the domain expert and it was
identified that there were in fact some issues in the system from the end of September
till mid-December 2020. This once again showcases the potential of the proposed al-
gorithm in identifying new trends in the data, long-term fault within the system in
this scenario.

Figure 5 represents the links between different views of the concepts present
in Table 11, which are obtained after using closed patterns. For example, the link

129

Table 10: Contextual conditions identified after receiving chunk 3.

Contextual Conditions (CC) OTM (◦C) OTS (◦C) Size
BC0 3.99 ±1.07 75
BC1 19.61 ±3.02 86
BC2 6.93 ±2.52 46
BC3 11.73 ±3.27 31
BC4 14.65 ±1.98 30
BC5 8.58 ±1.20 61

Table 11: Closed patterns from global model showing correlations between all three views after receiving
chunk 3.

S/N PHL SST SRT VOM VOS SE OTM OTS Size Months

13 4.25 26.58 25.67 1.78 ±1.27 74 19.76 ±3.02 80 [6--8]
1 6.89 28.16 26.73 8.30 ±4.32 75 15.47 ±3.66 8 [5]
11 5.23 25.99 24.66 9.77 ±2.89 21 14.65 ±1.98 30 [9]
9 0.00 27.63 26.11 11.16 ±0.50 −293 12.38 ±0.90 19 [10, 11]
7 10.23 31.46 29.67 10.63 ±1.66 81 11.36 ±3.26 15 [5]
5 10.52 30.62 29.69 11.05 ±1.20 90 11.19 ±3.16 11 [4]
0 13.81 35.43 32.29 11.17 ±1.18 89 8.69 ±2.89 8 [5]
10 0.00 33.82 30.68 12.09 ±0.95 −506 8.46 ±1.38 22 [10, 11]
2 13.13 34.20 32.77 11.47 ±1.16 90 8.0 ±3.00 9 [4]
8 21.05 41.07 36.72 13.17 ±0.93 100 5.59 ±2.2 18 [3, 4]
3 0.00 41.43 34.89 13.45 ±1.16 −787 5.27 ±1.71 10 [10, 11]
12 21.22 42.73 36.73 13.22 ±0.99 99 5.13 ±0.96 41 [1, 2, 12]
4 0.0 44.98 36.76 14.14 ±1.33 2852 3.75 ±0.58 10 [12]
6 29.62 47.69 39.75 15.16 ±1.23 104 1.02 ±1.85 14 [1, 2]

Note. The unit for PHL is kW and for SST, SRT, OTM, and OTS is ◦C. VOM, VOS, and SE are
expressed in %. For the full form of each feature see Table 1.

between BO1, BC1, and BP 0 supported by 80 instances is the strongest correlation
and represents concept 13.

In order to get further insight into the differences between the concepts and/or
to track any potential drifts, visualization techniques such as the ones shown in Fig-
ures 6–8 can be used. Figure 6 presents concepts from both the iterations, i.e., one af-
ter receiving chunk 2 and the other after receiving chunk 3when OTM is in the range,
10 ◦C < OTM < 15 ◦C. It can be observed that the graphs highlight two extremes,
Iteration2 - Concept 9 (SE = −293%) and Iteration 2 - Concept 11 (SE = 23%),
where the SE (SE ranges from 0 up to 100%. However, due to the generation of hot
tap water, it can rise up to 120%.) shows deviation from the other concepts. Simi-
larly, Figure 7 presents concepts when OTM < 10 ◦C and highlights three deviations,
Iteration 2 - Concept 4 (SE = 2852%), Iteration 2 - Concept 3 (SE = −789%),
and Iteration 2 - Concept 10 (SE = −506%). Note that except for the mentioned
concepts, all the others in the figure overlap, showing the similarity among them.
Figure 8 presents concepts of both the iterations after removing the deviating con-
cepts when OTM < 10 ◦C. It can be clearly observed that all concepts are close to
one another. As demonstrated, these graphs can be used by domain experts to see the
similarities or changes between different concepts, which can help them to identify
the changes in the behavior of the system. In the long run, they can also have one
such graph for each smaller temperature range (say, for example, 1 or 2 ◦C). It is

130

expected that concepts in the same temperature range should be similar, so even a
small deviation in behavior (gradual concept drift) can also be observed.

Figure 5: Tripartite graph representing the relationships between different concepts after receiving chunk 3.
Color thickness of the edges correlates to the size of the concept.

OTM(◦C)

VOM(%)SE(%)

−
2

5
0

−
2

0
0

−
1

5
0

−
1

0
0

−
5

0

0 5
0

concept

Iteration2 - Concept 5

Iteration1 - Concept 3

Iteration2 - Concept 7

Iteration2 - Concept 11

Iteration2 - Concept 9

Figure 6: Comparing concepts of both the iterations (after receiving chunk 2 and 3, Iteration 1 and 2, respec-
tively) using the relationship between OTM, VOM, and SE when 10 ◦C < OTM < 15 ◦C. Note that some of the
concepts in the legend are not visible in the image due to overlap.

131

OTM(◦C)

VOM(%)SE(%)

−
5

0
0

0 5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

concept

Iteration2 - Concept 4

Iteration2 - Concept 6

Iteration1 - Concept 0

Iteration1 - Concept 9

Iteration2 - Concept 12

Iteration1 - Concept 7

Iteration2 - Concept 8

Iteration1 - Concept 4

Iteration1 - Concept 5

Iteration2 - Concept 2

Iteration2 - Concept 0

Iteration2 - Concept 10

Iteration2 - Concept 3

Figure 7: Comparing concepts of both the iterations (after receiving chunk 2 and 3, Iteration 1 and 2, respec-
tively) using the relationship between OTM, VOM, and SE, when OTM < 10 ◦C. Note that some of the concepts
in the legend are not visible in the image due to overlap.

OTM(◦C)

VOM(%)SE(%)

0 20 40 60 80 100

concept

Iteration2 - Concept 6

Iteration1 - Concept 0

Iteration1 - Concept 9

Iteration2 - Concept 12

Iteration1 - Concept 7

Iteration2 - Concept 8

Iteration1 - Concept 4

Iteration1 - Concept 5

Iteration2 - Concept 2

Iteration2 - Concept 0

Figure 8: Comparing concepts of both the iterations (after receiving chunk 2 and 3, Iteration 1 and 2, respec-
tively) using the relationship between OTM, VOM, and SE, when OTM < 10 ◦C and after removing deviating
concepts 3, 4, and 10 of iteration 2. Note that some of the concepts in the legend are not visible in the image
due to overlap.

Experiments on the Tap-Water System Similar to the experiments conducted for
the heating system, individual system analysis is also performed on the tap-water
system. Based on the discussion and feedback received from the domain expert, the
features characterizing the tap-water behavior are divided into three views, namely
operation, performance, and context, as shown in Table 12.

The features measuring the system’s operational parameters include the primary
heat load, volume of water used during the day, supply, and return temperatures. For
measuring the performance, openness of both the valves used by the tap-water system
along with the primary delta (difference between the primary supply and primary
return temperatures) are considered. Among the two valves, VOM3, a three-way

132

valve, is responsible for regulating the hot tap-water temperature to be around 60 ◦C.
In order to maintain this temperature, the valve might sometimes allow cold water
to be mixed with hot water. Hence, its standard deviation is not considered as it
is not varied often. The outdoor temperature and the openness of the valve from
the heating system are considered as the contextual parameters. The valve openness
of the heating system is included as a contextual parameter as it impacts the tap-
water system. The hot water obtained from the primary network first goes through
the heating system to heat the room, and after that, the water is used by the tap-
water system. The valve in the heating system lets out this water and hence can be
considered as a context from the tap-water system point of view. It can also be noted
that during the non-heating seasons, that is, when the outdoor temperature is above
17◦C, the heating system valve is completely closed and the heat obtained from the
primary network is only used to heat the tap-water.

Table 12: Features used for monitoring the tap-water system.

View Id Feature Name Acronyms Units

Operation 4

Tap-water Initial Supply Temperature T WIST
◦C

Tap-water Final Supply Temperature T WF ST
◦C

Tap-water Return Temperature T WRT
◦C

Primary Heat Load PHL kW
Tap-water Volume Consumed T WV m3

Performance 5

Tap-water Valve Openness Mean 2 VOM2 %
Tap-water Valve Openness Standard Deviation 2 VOS2 %
Tap-water Valve Openness Mean 3 VOM3 %
Primary Delta ∆P ◦C

Context 6 Outdoor Temperature Mean OTM ◦C
Valve Openness Mean (Heating system) VOM %

Initial clustering in all the chunks and for all the three views is done using k-
means clustering, for which SI is used to determine the optimal number of clusters.
Table 13 presents details about the number of initial clusters considered for each of
the data chunks.

Table 13: Initial number of clusters in three chunks for each view---Tap-water System

Chunk View 4 View 5 View 6

1 6 5 5
2 7 5 4
3 3 6 7

When the global model is updated after the arrival of chunk 2, the concept lat-
tice generated contained 132 non-empty concepts, of which 59 concepts connected
all three views. After using the closed patterns, the model has 48 concepts connect-
ing any two views of the local models and 16 connecting all three views. Table 14
represents all these 16 concepts.

As explained earlier, VOM3 is the valve openness mean of a three-way valve
used in the tap-water system. It has an opening for letting in the cold water when the

133

temperature of the water is above 60 ◦C. Opening this valve for letting in cold water
is not the desired function, as it leads to energy waste, i.e., the water is initially heated
and then cooled down. So, in the desired functionality, the valve of VOM3 should be
close to 100, representing that the valve only allows hot water to go through. It can be
observed fromTable 14 that the model was able to categorize the concepts (10, 13, 14,
and 15), where the average values for VOM3 are a lot less than 100, implicating that
the valve was opened to let in cold water to maintain the water temperature, which is
not desired. This can help the domain experts to analyze the identified situation and
detect what went wrong. It is interesting to note that two out of these four (concepts
15 and 14) occurred when hot water consumption was high. All the four concepts
occurred during the heating season, that is, when the outdoor temperature is below
15 ◦C. This reflects the heating system’s impact on the tap-water system as discussed
previously when explaining categorizing the features into different views.

The global model is again updated after receiving chunk 3. This time, the gener-
ated concept lattice has 63 non-empty concepts, of which 35 concepts link all three
views. After the closed patterns are used, there are 35 concepts linking any two views
and 18 concepts linking all three views. Table 15 presents all these 18 concepts. Sim-
ilar to what is observed for the model generated on the first two chunks (Table 14),
the average VOM3 values are not close to 100 during the heating season in four con-
cepts (0, 12, 16, and 17). This is explainable as there are influences from the heating
system when it is running. It can also be observed in these concepts that the supply
temperature (TWIST) of the tap-water system is over the natural threshold (55 ◦C),
which is expected. Furthermore, the values for TWF ST are high when compared
with other values.

5.2.2 Integrated Analysis of Heating and Tap-Water Systems
For the third experimental scenario, data from both heating and tap-water sub-systems,
which are part of an HVAC&R system, are considered. Based on the experiments per-
formed on the tap-water system, it is already observed that the tap-water system is
influenced by the heating system, especially during the heating season. Therefore,
the following experiment is performed to get a deeper insight of into how these sys-
tems work in coordination. Along with being able to highlight the correlations be-
tween different views of both systems, this experiment also showcases the flexibility
of the proposed algorithm. The local models produced during the experiments of the
heating and tap-water systems can be directly used to build a new global model rep-
resenting the relations between all six views (note that the number of views selected
could be dynamically changed based on the requirement).

Two global models are built to find the correlations between both systems, one
after receiving chunk 2 and the other after receiving chunk 3. In the first iteration, the
global model has 892 non-empty concepts, while in the second iteration, the number
of concepts is reduced to 382. This could have also been due to fewer instances

134

Ta
bl
e
14
:C

lo
se
d
pa

tte
rn
sf
ro
m

gl
ob

al
m
od

el
sh
ow

in
g
co

rre
la
tio

ns
be

tw
ee

n
al
lt
hr
ee

vi
ew

sa
fte

rr
ec

ei
vi
ng

ch
un

k
2.

V
al
ue

sa
re

so
rte

d
ba

se
d
on

O
TM

fo
llo
w
ed

by
T

W
V
.

S/
N

PH
L

T
W

IS
T

T
W

F
S

T
T

W
R

T
T

W
V

V
O
M
2

V
O
S2

V
O
M
3

∆
P

O
TM

V
O
M

Si
ze

M
on
th
s

4
2.
58

57
.0
9

56
.3
3

53
.9
7

0.
30

5.
06

±
10
.3
7

98
.5
1

33
.2
6

22
.8
1

0.
00

16
[6
–9
]

8
5.
21

56
.9
3

56
.2
4

53
.8
0

0.
30

5.
18

±
11
.3
0

99
.0
1

35
.6
4

18
.1
5

7.
31

24
[5
–8
]

2
5.
22

56
.7

55
.9
4

53
.5
0

0.
68

8.
62

±
13
.7
7

98
.7
7

39
.5
4

18
.1
7

7.
17

15
[5
–9
]

12
5.
55

55
.5
5

54
.8
7

52
.4
7

0.
55

8.
82

±
12
.3
3

99
.8
5

34
.0
8

17
.4
7

7.
44

28
[5
–9
]

3
5.
04

55
.0
2

54
.3
8

51
.9
6

0.
62

17
.0
7

±
9.
18

99
.9
9

38
.7
7

16
.9
5

6.
22

15
[5
,6
]

7
11
.5
6

55
.7
2

55
.0
5

52
.6
8

0.
71

10
.4
9

±
13
.4
1

99
.8
6

38
.8
3

11
.9
4

11
.3
2

22
[4
–6
,9
,1
0]

1
9.
38

57
.0
6

56
.5
1

53
.8
5

0.
24

6.
02

±
12
.0
2

98
.2
4

41
.1
4

11
.6
0

11
.2
7

15
[1
,4
,5
,7
,9
]

9
13
.6
0

56
.5
7

55
.8
7

53
.4
3

0.
84

8.
92

±
13
.3
5

99
.3
1

40
.1
7

10
.7
0

11
.6
0

25
[4
,5
,7
,9
,1
0]

10
11
.5
2

57
.0
8

56
.2
0

53
.5
0

0.
85

11
.2
2

±
14
.2
1

93
.5
8

51
.2
0

10
.2
6

11
.4
4

26
[2
–5
]

11
26
.4
8

56
.0
4

55
.7
5

52
.6
7

0.
95

11
.1
3

±
13
.9
1

99
.6
2

39
.4
0

5.
18

15
.0
2

28
[1
–3
,5
,1
0,
12
]

0
16
.0
5

56
.9
8

56
.3
0

53
.7
7

0.
24

6.
33

±
10
.9
7

98
.3
6

43
.7
1

4.
99

13
.7
2

13
[1
–4
,1
0–
12
]

6
21
.8
6

56
.9
7

56
.1
2

53
.6
8

0.
85

7.
59

±
11
.9
5

98
.5
8

40
.2
4

4.
71

13
.6
0

17
[1
–3
,1
0–
12
]

15
14
.1
4

56
.8
0

56
.2
3

53
.3
2

0.
95

11
.4
8

±
15
.0
2

96
.4
5

49
.0
5

4.
48

14
.2
0

30
[2
–4

11
,1
2]

13
22
.0
4

58
.9

57
.6
0

54
.9
2

0.
60

4.
60

±
10
.1
8

94
.7
8

43
.8

3.
87

13
.1
1

29
[1
–3
,5
,1
0–
12
]

5
37
.2
4

56
.4
3

56
.1
1

52
.7
3

0.
81

9.
35

±
14
.0
7

99
.4
7

38
.3
8

2.
09

17
.4
3

17
[1
–3
,1
2]

14
46
.8
1

58
.6
4

57
.5
7

53
.9
2

1.
00

5.
84

±
11
.8
7

95
.8
3

42
.5
3

−
1.
66

18
.4
2

30
[1
–3
,1
2]

N
ot
e.

Th
e
un

its
fo
rP

HL
an

d
T

W
V
ar
e
kw

an
d
m

3
,r
es
pe

ct
iv
el
y.

Th
e
un

it
fo
rT

W
I

S
T
,T

W
F

S
T
,T

W
R

T
,∆

P
,a

nd
O
TM

is
◦
C
.V

O
M
,

V
O
M
2,
V
O
S2
,a

nd
V
O
M
3
ar
e
ex

pr
es
se
d
in
%
.F

or
th
e
fu
llf
or
m

of
ea

ch
fe
at
ur
e
se
e
Ta

bl
e
12
.

135

Table
15:C

losed
patternsfrom

globalm
od

elshow
ing

correlationsbetw
een

allthree
view

safterreceiving
chunk

3.V
aluesare

sorted
based

on
O
TM

follow
ed

by
T

W
V
.

S/N
PH

L
T

W
IS

T
T

W
F

S
T

T
W

R
T

T
W

V
V
O
M
2

V
O
S2

V
O
M
3

∆
P

O
TM

V
O
M

Size
M
onths

6
3.34

55.21
54.66

52.31
0.48

6.97
±
8.52

100.00
32.55

23.03
0.00

11
[6–8]

15
3.99

55.34
54.55

52.20
0.56

16.39
±
10.71

100.00
34.21

22.33
0.26

23
[6–8]

14
4.30

54.90
54.24

51.77
0.64

17.10
±
9.73

100.00
35.87

18.24
0.01

20
[7,8]

7
4.00

54.96
54.28

51.98
0.59

10.39
±
10.65

100.00
38.30

17.99
0.00

11
[7,8]

11
5.04

55.02
54.38

51.96
0.62

17.07
±
9.18

99.99
38.77

16.95
6.22

15
[5,6]

8
7.14

54.85
54.44

51.62
0.72

9.10
±
9.02

100.00
50.96

14.63
10.31

11
[9]

4
0.00

54.88
54.49

51.58
0.65

16.14
±
9.03

100.00
−
13.48

14.25
10.61

10
[9,10]

13
0.00

54.84
54.49

51.64
0.77

12.10
±
10.35

100.00
−
21.36

9.88
11.53

16
[10,11]

16
13.75

56.78
55.88

53.35
0.74

10.89
±
13.18

94.62
49.60

9.27
11.59

33
[1,2,4,5,9]

12
13.11

59.49
57.53

54.81
0.57

7.01
±
12.30

90.68
47.41

9.03
11.35

16
[2,4,5]

1
0.00

54.94
54.57

51.63
0.61

7.05
±
7.30

100.00
−
17.17

8.92
11.52

8
[10,11]

2
0.00

54.85
54.45

51.69
0.90

11.76
±
10.99

100.00
−
22.76

6.94
13.35

9
[11,12]

9
0.00

54.90
54.42

51.67
0.57

7.09
±
8.73

100.00
−
18.08

5.97
13.04

12
[10–12]

5
20.65

54.93
54.50

51.68
0.64

9.62
±
9.65

100.00
47.74

5.48
12.97

10
[12]

0
20.27

58.80
57.93

55.14
0.70

5.56
±
12.97

93.90
46.09

3.97
12.98

8
[1–3]

10
25.04

55.58
54.78

52.39
0.99

15.93
±
12.43

99.12
42.64

3.95
14.60

13
[1–4]

3
0.00

54.85
54.42

51.68
0.82

10.45
±
10.84

100.00
−
21.17

3.34
14.15

9
[11,12]

17
24.33

56.37
55.48

53.18
0.79

10.62
±
12.41

96.69
45.29

2.77
13.97

38
[1–4,12]

N
ote.The

unitsforPHL
and

T
W

V
are

kw
and

m
3,respectively.The

unitfor
T

W
I

S
T ,

T
W

F
S

T ,
T

W
R

T ,∆
P
,and

O
TM

is
◦C

.V
O
M
,

V
O
M
2,V

O
S2,and

V
O
M
3
are

expressed
in
%
.Forthe

fullform
ofeach

feature
see

Table
12.

136

available when chunks 2 and 3 are combined compared to the combination of chunks
1 and 2.

Tables 16 and 17 present the concepts retained after using the closed patterns (8,
10 concepts after chunk 2 and 3 have arrived, respectively). These concepts present
the correlation between all six views from both the systems. Note that all the features
available in the global model are not presented in the tables, as they are too many.
Some interesting features that represent the relations between the considered systems
are selected.

From Table 16, a deviating behavior can be observed for concept 4. VOM devi-
ates from the patterns seen in other concepts. In addition, it is interesting to see that
VOM3 has the greatest drop (6.03%) in value from 100% when compared to other
concepts. That is, the valve lets in cold water to reduce the hot tap-water temperature,
which is not a desired function. Concept 4 also shows a sudden drop in the trends of
the TWV . Based on the observed patterns, it is expected to have an increase in hot
water usage as the temperature decreases, but this is not the case for this concept.

Concept 0 has a deviating behavior with respect to PHL, i.e., 3 kW (note that this
was also identified when analyzing the heating sub-system individually). If one takes
a closer look at the features considered for the tap-water system, it can be observed
that the ∆P and TWV are the highest during this period. It is interesting to observe
this, as having higher ∆P is considered a desired functionality since the system is
consuming the energy provided. However, when the raw data are investigated it is
noticed that the primary supply and return temperatures are constant at 89 and 38,
respectively, leading to a value of 51 for ∆P . This represents a potential fault in
these sensors. Based on these for concept 0, it is concluded that there could have
been some issues with the sensors collecting the PHL and primary supply and return
temperatures data.

For concept 2, it can be observed that the openness of VOM2 (17.43%) is un-
usually high compared to the other concepts and can be interpreted as a deviating
behavior. It is interesting to note that the same concept is retained even after receiv-
ing chunk 3 (concept 7 from Table 17), implicating that the data characteristics do not
match with any of the new data, which further solidifies that it might be a deviating
concept. Interestingly, when the domain expert investigates the system to find the
actual cause, it is found to be strange but expected behavior. This concept is easily
identified in the integrated scenario compared to the results only from the tap water
system as there is more than one concept with similar behavior. This demonstrates
that the integrated scenario can help identify trends not visible in individual system
analysis. The influence of these systems on each other can reveal hidden patterns
and deviating behaviors.

In Table 17, concept 0 has a deviating behavior with respect to both the PHL (0
kW) and ∆P (−19.18 ◦C). It also has a negative SE value (−420%) which is out
of range of the normal SE values; hence it can be concluded that there were issues
with the system during this time (this was also identified while analyzing the heating

137

Table
16:C

losed
patternsfrom

globalm
od

elshow
ing

correlationsbetw
een

allsix
view

safterreceiving
chunk

2.V
aluesare

sorted
based

on
O
TM

.

S/N
PH

L
SST

SSR
V
O
M

SE
O
TM

T
W

IS
T

T
W

F
S

T
T

W
R

T
T

W
V

V
O
M
2

V
O
M
3

∆
P

Size
M
onths

1
2.66

27.02
26.53

0.00
67

23.15
56.96

56.29
53.95

0.29
5.36

98.50
33.24

14
[6–8]

6
4.83

29.51
26.83

7.23
70

18.19
56.89

56.26
53.74

0.30
5.03

99.16
35.51

21
[7,8]

3
5.40

29.38
26.86

7.25
69

17.95
55.69

55.00
52.64

0.45
7.71

99.72
31.52

15
[6–8]

2
5.03

26.57
26.08

6.16
80

16.92
55.01

54.36
51.94

0.61
17.43

100.00
39.14

14
[6]

0
3.00

42.12
36.19

14.83
97

5.60
56.49

56.47
52.95

0.97
11.79

98.57
51.00

14
[3,4]

5
26.56

43.09
36.82

15.09
100

5.23
55.88

55.73
52.53

0.95
11.34

99.72
39.07

19
[1,2,12]

4
22.52

44.61
39.25

13.12
96

3.85
58.85

57.47
54.84

0.69
4.57

93.97
43.93

16
[10,11]

7
47.60

50.89
40.04

18.58
99

−
1.70

58.64
57.58

53.90
1.00

5.78
95.62

42.42
27

[1,2]
N
ote.The

unitsforPHL
and

T
W

V
are

kw
and

m
3,respectively.The

unitfor
T

W
I

S
T ,

T
W

F
S

T ,
T

W
R

T ,∆
P
,and

O
TM

is
◦C

.V
O
M
,

V
O
M
2,and

V
O
M
3
are

expressed
in
%
.Forthe

fullform
ofeach

feature
see

Tables1
and

12.

138

Ta
bl
e
17
:C

lo
se
d
pa

tte
rn
sf
ro
m

gl
ob

al
m
od

el
sh
ow

in
g
co

rre
la
tio

ns
be

tw
ee

n
al
ls
ix
vi
ew

sa
fte

rr
ec

ei
vi
ng

ch
un

k
3.

V
al
ue

sa
re

so
rte

d
ba

se
d
on

O
TM

.

S/
N
PH

L
SS
T

SS
R

V
O
M

SE
O
TM

T
W

IS
T

T
W

F
S

T
T

W
R

T
T

W
V

V
O
M
2

V
O
M
3

∆
P

Si
ze

M
on
th
s

4
3.
34

27
.2
0

26
.1
0

0.
00

70
23
.0
3

55
.2
1

54
.6
6

52
.3
1

0.
48

6.
97

10
0.
00

32
.5
5

11
[6
–8
]

9
4.
05

26
.4
7

26
.1
4

0.
27

74
22
.4
1

55
.3
6

54
.5
6

52
.2
1

0.
56

16
.4
5

10
0.
00

34
.5
6

22
[6
–8
]

1
3.
92

26
.7
2

24
.9
4

0.
00

75
18
.0
8

54
.9
2

54
.2
4

51
.9
4

0.
57

10
.3
3

10
0.
00

38
.3
9

10
[7
,8
]

8
4.
39

26
.3
2

24
.8
3

0.
01

74
18
.5
3

54
.9
1

54
.2
5

51
.7
7

0.
65

16
.4
6

10
0.
00

36
.3
9

16
[7
,8
]

7
5.
03

26
.5
7

26
.0
8

6.
16

80
16
.9
2

55
.0
1

54
.3
6

51
.9
4

0.
61

17
.4
3

10
0.
00

39
.1
4

14
[6
]

5
7.
14

25
.8
2

24
.2
6

10
.3
1

83
14
.6
3

54
.8
5

54
.4
4

51
.6
2

0.
72

9.
10

10
0.
00

50
.9
6

11
[9
]

0
0.
00

32
.0
0

29
.8
6

11
.7
1

−
42
0

9.
10

54
.8
3

54
.4
6

51
.6

0.
75

11
.8
1

10
0.
00

−
19
.1
8

8
[1
0,
11
]

2
20
.6
5

42
.0
7

35
.5
2

12
.9
7

97
5.
48

54
.9
3

54
.5
0

51
.6
8

0.
64

9.
62

10
0.
00

47
.7
4

10
[1
2]

6
24
.3
2

44
.8
4

37
.6
6

13
.7
9

10
1

3.
40

55
.9
2

55
.1
5

52
.7
0

0.
73

9.
80

97
.9
5

46
.0
2

12
[1
,2
,1
2]

3
29
.5
1

47
.7
5

39
.8
0

15
.1
0

10
4

0.
87

56
.4
8

55
.4
7

53
.1
4

1.
03

12
.7
1

95
.6
9

46
.3
3

11
[1
,2
]

N
ot
e.

Th
e
un

its
fo
rP

HL
an

d
T

W
V
ar
e
kw

an
d
m

3
,r
es
pe

ct
iv
el
y.

Th
e
un

it
fo
rT

W
I

S
T
,T

W
F

S
T
,T

W
R

T
,∆

P
,a

nd
O
TM

is
◦
C
.V

O
M
,

V
O
M
2,
an

d
V
O
M
3
ar
e
ex

pr
es
se
d
in
%
.F

or
th
e
fu
llf
or
m

of
ea

ch
fe
at
ur
e
se
e
Ta

bl
es

1
an

d
12
.

139

sub-system).
Similar to what was observed in the tap-water system, one can see that the VOM3

has deviated from the desired average value of 100% (concepts 4, 7 from Table 16
and concepts 3, 6 from Table 17) mainly during the heating seasons and when the
outdoor temperature is close to 0 ◦C. It is interesting to note that the SE and VOM
both show acceptable values for this period.

The above analysis shows that the integrated global models built using the sub-
systems’ local models can also represent the deviating behaviors observed while an-
alyzing each system individually. This provides the opportunity to have a high-level
overview of correlations between both considered systems and helps identify devi-
ating concepts that were not so obvious to identify when only a single system is
considered.

6 Applicability and Limitations
In this study, we investigate the use of the MV Multi-Instance Clustering approach
proposed in [5] for monitoring smart building systems’ sensor data. Two data min-
ing techniques are developed by applying this approach and are studied in this paper.
Those can be used for multi-view analysis, mining, and visualization of sensor data to
assist domain experts in monitoring and analyzing different systems’ behavior. One
of the techniques considers contextual factors in the analysis of system behaviour
and performance. The other focuses on dealing with integrated systems, such as
those available in the smart building domain. The proposed MV approach addition-
ally allows the domain experts to set the threshold (support) used to identify frequent
patterns based on their interests. Such flexibility enables the domain experts to mon-
itor different sub-systems based on various criteria and objectives. The conducted
experiments demonstrate that the proposed data mining techniques are capable of
identifying deviating behaviors. In general, the presented data analytic tools may be
used in other similar applied scenarios relying on static sensor networks for system
monitoring.

In addition to the applicability, we identified three limitations in the current study.
First, the study mainly focuses on the sub-systems of the HVAC&R system of a spe-
cific building. In the future, we plan to explore and evaluate the algorithm’s per-
formance on other systems and different types of buildings. The second limitation
concerns the studied contextual conditions. Currently, only two contextual factors,
namely outdoor temperature and the effect of the heating system on the tap-water
system, are considered. Other complex parameters representing the social behavior
of the people living in the building can be included in the model. One such example
is dividing a day into parts representing people’s typical daily activities, e.g., morn-
ing, afternoon, evening, and night, or including the day category, i.e., weekday or
weekend. The third identified limitation is related to the concept drift. As stated in

140

Section 2.2, there are six different types of concept drifts. The current study does
not perform explicit experimentation to test the proposed approach’s ability to detect
these drift scenarios. Based on the experiments and results obtained, one can con-
clude that the approach is able to identify frequent deviating behavior groups (based
on the user-defined threshold). However, further analysis needs to be performed to
determine the algorithm’s performance in identifying different concept drift types.

7 Conclusion and Future Work
In this study, we have demonstrated how our multi-view stream clustering algorithm,
entitled MV Multi-Instance Clustering algorithm [5], can be used to analyze and
monitor different systems present in a smart building environment. The approach
considers the multi-source nature of the smart building data and provides individual
context-aware and integrated tools of modeling and analyzing the system behavior.
We propose various visualization and data mining techniques that can be used at each
step of the proposed algorithm. These visualizations facilitate further perception and
understanding of the obtained results and can be used by the domain experts in step-
by-step analysis of the system behaviour and performance.

Our multi-view stream clustering algorithm perfectly suits the multi-source na-
ture of the data in the smart building domain usually collected frommultiple systems.
It can be used to analyze these systems due to its flexible character; i.e., it can dynam-
ically select the views used to build the global model to analyze single or multiple
systems together as per the need. This flexibility is demonstrated in our work by
analyzing the heating and tap-water systems individually and together. The obtained
results have shown that our algorithm has the potential to be used in the smart build-
ing domain for monitoring and analyzing system behavior and performance. The
approach has successfully identified new trends and deviating or non-desired behav-
ioral modes. The built global model has also showcased various correlations between
different views considered. The proposed algorithm can facilitate the domain experts
in obtaining more profound insights into systems’ performances and at the same time
be able to identify and analyze deviating behavior.

Our future plans include exploring other smart building systems and richer con-
textual conditions. For example, the ventilation sub-system, which is also a part of
the HVAC&R system, could be included in the analysis as heating, tap-water, and
ventilation sub-systems affect one another. In addition, in order to reduce the effects
of social behavior of people on the analysis, we are interested in studying contextual
factors. Note that each building has a unique and recurring social behavior patterns
and energy usage. Furthermore, the ability of the algorithm in identifying different
types of concept drift will be investigated. Finally, we plan to work in the direction of
building a user-friendly prototype of the algorithm with the proposed visualizations
at each phase so that the domain experts can directly use it in their regular day-to-day

141

analysis of the systems.

Abbreviations
The following abbreviations are used in this manuscript:

CC Contextual Conditions
DH District Heating
HVAC&R Heating, Ventilation, Air Conditioning and Refrigeration
MAD Median Absolute Deviation
MI Multi-Instance
ML Machine Learning
MV Multi-View
MV-MIC MV Multi-Instance Clustering
OM Operating Modes
OTM Outdoor Temperature Mean
OTS Outdoor Temperature Standard Deviation
PM Performance Modes
PHL Primary Heat Load
SRT Secondary Return Temperature
SST Secondary Supply Temperature
SI Silhouette Index
SE Sub-station Efficiency
T WF ST Tap-water Final Supply Temperature
T WIST Tap-water Initial Supply Temperature
T WRT Tap-water Return Temperature
T WV Tap-water Volume Consumed
VOM Valve Openness Mean
VOS Valve Openness Standard Deviation

References
[1] H. Farzaneh, L. Malehmirchegini, A. Bejan, T. Afolabi, A. Mulumba, and

P. P. Daka. “Artificial intelligence evolution in smart buildings for energy ef-
ficiency”. In: Applied Sciences (Switzerland) 11.2 (2021), pp. 1–26.

[2] R. Jafari-Marandi, M. Hu, and O. Omitaomu. “A distributed decision frame-
work for building clusters with different heterogeneity settings”. In: Applied
Energy 165 (2016), pp. 393–404. DOI: 10.1016/j.apenergy.2015.12.
088.

[3] M. Hu, J. D. Weir, and T. Wu. “Decentralized operation strategies for an in-
tegrated building energy system using a memetic algorithm”. In: European
Journal of Operational Research 217.1 (2012), pp. 185–197. ISSN: 0377-2217.
DOI: https://doi.org/10.1016/j.ejor.2011.09.008.

[4] G. Mbiydzenyuy, S. Nowaczyk, H. Knutsson, D. Vanhoudt, J. Brage, and E.
Calikus. “Opportunities for Machine Learning in District Heating”. In: Ap-
plied Sciences 11.13 (2021). ISSN: 2076-3417. DOI: 10.3390/app11136112.
URL: https://www.mdpi.com/2076-3417/11/13/6112.

142

https://doi.org/10.1016/j.apenergy.2015.12.088
https://doi.org/10.1016/j.apenergy.2015.12.088
https://doi.org/https://doi.org/10.1016/j.ejor.2011.09.008
https://doi.org/10.3390/app11136112
https://www.mdpi.com/2076-3417/11/13/6112

[5] V. M. Devagiri, V. Boeva, and S. Abghari. “A Multi-view Clustering Ap-
proach for Analysis of Streaming Data”. In: Artificial Intelligence Applica-
tions and Innovations. Ed. by I. Maglogiannis, J. Macintyre, and L. Iliadis.
Cham: Springer International Publishing, 2021, pp. 169–183. ISBN: 978-3-030-
79150-6.

[6] L. Fu, P. Lin, A. V. Vasilakos, and S.Wang. “An overview of recent multi-view
clustering”. In: Neurocomputing 402 (2020), pp. 148–161. ISSN: 0925-2312.
DOI: https://doi.org/10.1016/j.neucom.2020.02.104.

[7] S. Huang, Z. Xu, I. W. Tsang, and Z. Kang. “Auto-weighted multi-view co-
clustering with bipartite graphs”. In: Information Sciences 512 (2020), pp. 18–
30. ISSN: 0020-0255. DOI: https://doi.org/10.1016/j.ins.2019.09.
079.

[8] M. Ghesmoune, M. Lebbah, and H. Azzag. “State-of-the-art on clustering data
streams”. In: Big Data Analytics 1.1 (2016), pp. 1–27.

[9] A. Zubaroglu and V. Atalay. “Data stream clustering: a review”. In: Artificial
Intelligence Review 54.2 (2021), pp. 1201–1236. DOI: 10 . 1007 / s10462 -
020-09874-x.

[10] K. Wadewale and S. Desai. “Survey on Method of Drift Detection and Classi-
fication for time varying data set”. In: Int. Res. J. Eng. Technol. Vol. 2. 2015,
pp. 709–713.

[11] J. Foulds and E. Frank. “A review of multi-instance learning assumptions”.
In: Knowledge Engineering Review 25.1 (2010), pp. 1–25. DOI: 10.1017/
S026988890999035X.

[12] Y. Chen, J. Bi, and J. Wang. “MILES: Multiple-instance learning via embed-
ded instance selection”. In: IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 28.12 (2006), pp. 1931–1947. DOI: 10.1109/TPAMI.2006.
248.

[13] M. Kandemir and F. Hamprecht. “Computer-aided diagnosis from weak su-
pervision: A benchmarking study”. In: Computerized Medical Imaging and
Graphics 42 (2015), pp. 44–50. DOI: 10.1016/j.compmedimag.2014.11.
010.

[14] M. Zhang and Z. Zhou. “Multi-instance clustering with applications to multi-
instance prediction”. In: Applied Intelligence 31 (2009), pp. 47–68.

[15] G. Edgar.Measure, Topology, and Fractal Geometry, 3rd. edn. Springer, Berlin,
1995.

[16] J. Wang and J.-D. Zucker. “Solving the multiple-instance problem: a lazy
learning approach”. In: Proc. of the 17th ICML. 2000, pp. 1119–1125.

143

https://doi.org/https://doi.org/10.1016/j.neucom.2020.02.104
https://doi.org/https://doi.org/10.1016/j.ins.2019.09.079
https://doi.org/https://doi.org/10.1016/j.ins.2019.09.079
https://doi.org/10.1007/s10462-020-09874-x
https://doi.org/10.1007/s10462-020-09874-x
https://doi.org/10.1017/S026988890999035X
https://doi.org/10.1017/S026988890999035X
https://doi.org/10.1109/TPAMI.2006.248
https://doi.org/10.1109/TPAMI.2006.248
https://doi.org/10.1016/j.compmedimag.2014.11.010
https://doi.org/10.1016/j.compmedimag.2014.11.010

[17] B. Ganter, G. Stumme, and R. Wille. “Formal Concept Analysis: Foundations
and Applications”. In: LNAI, no. 3626, Springer-Verlag, 2005.

[18] R. Agrawal and R. Srikant. “Mining sequential patterns”. In: Proc. of the 11th
Int. Conf. on Data Engineering. IEEE. 1995, pp. 3–14.

[19] J.Wang and J. Han. “BIDE: efficient mining of frequent closed sequences”. In:
Proceedings of the 20th International Conference on Data Engineering. 2004,
pp. 79–90.

[20] G. Chao, S. Sun, and J. Bi. “A survey on multi-view clustering”. In: IEEE
Transactions on Artificial Intelligence (2021), pp. 1–1. DOI: 10.1109/TAI.
2021.3065894.

[21] Y. Yang and H.Wang. “Multi-view clustering: A survey”. In: Big Data Mining
and Analytics 1.2 (June 2018), pp. 83–107. ISSN: 2096-0654.

[22] X. Liu and et al. “Late Fusion Incomplete Multi-View Clustering”. In: IEEE
Trans. on Pattern Analysis and Machine Intelligence 41.10 (2019), pp. 2410–
2423.

[23] Y. Ye and et al. “Incomplete Multiview Clustering via Late Fusion”. In: Com-
putational Intelligence and Neuroscience 2018 (Oct. 2018), pp. 1–11.

[24] B. Jiang and et al. “Evolutionary multi-objective optimization for multi-view
clustering”. In: 2016 IEEE CEC 2016. 2016, pp. 3308–3315.

[25] J. Liu and et al. “Multi-view clustering via joint non-negative matrix factor-
ization”. In: Proceedings of the 2013 SIAM International Conference on Data
Mining, SDM 2013. 2013, pp. 252–260.

[26] L. Huang and et al. “MVStream:MultiviewData StreamClustering”. In: IEEE
Transactions onNeural Networks and Learning Systems 31.9 (2020), pp. 3482–
3496.

[27] W. Shao and et al. “Online multi-view clustering with incomplete views”. In:
2016 IEEE Int. Conf. on Big Data (Big Data). 2016, pp. 1012–1017.

[28] S. Abghari, V. Boeva, J. Brage, and H. Grahn. “Multi-view clustering analyses
for district heating substations”. In: 2020, pp. 158–168.

[29] T. Felix, K. Patrick, B. Ralph, W. Wolfgang, B. Wolfgang, and W. Adrian.
“Fault Detection and Condition Monitoring in District Heating Using Smart
Meter Data”. In: Proceedings of the 6th European Conference of the Prognos-
tics and Health Management Society (2021), pp. 407–417.

[30] A. Eghbalian, S. Abghari, V. Boeva, and F. Basiri. “Multi-view Data Mining
Approach for BehaviourAnalysis of Smart Control Valve”. In: 2020, pp. 1238–
1245. DOI: 10.1109/ICMLA51294.2020.00195.

[31] E. Shchetinin. “Improving the efficiency of energy consumption in smart grids
with application of artificial intellect”. In: vol. 2267. 2018, pp. 313–317.

144

https://doi.org/10.1109/TAI.2021.3065894
https://doi.org/10.1109/TAI.2021.3065894
https://doi.org/10.1109/ICMLA51294.2020.00195

[32] C. Zhang, Y. Zhao, T. Li, X. Zhang, and M. Adnouni. “Generic visual data
mining-based framework for revealing abnormal operation patterns in build-
ing energy systems”. In: Automation in Construction 125 (2021), p. 103624.
ISSN: 0926-5805. DOI: https://doi.org/10.1016/j.autcon.2021.
103624. URL: https://www.sciencedirect.com/science/article/
pii/S0926580521000753.

[33] S. J. Simoff, M. H. Böhlen, and A. Mazeika. “Visual Data Mining: An In-
troduction and Overview”. In: Visual Data Mining: Theory, Techniques and
Tools for Visual Analytics. Ed. by S. J. Simoff, M. H. Böhlen, and A. Mazeika.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 1–12. ISBN: 978-
3-540-71080-6. DOI: 10 . 1007 / 978 - 3 - 540 - 71080 - 6 _ 1. URL: https :
//doi.org/10.1007/978-3-540-71080-6_1.

[34] D. Keim. “Information visualization and visual data mining”. In: IEEE Trans-
actions on Visualization and Computer Graphics 8.1 (2002), pp. 1–8. DOI:
10.1109/2945.981847.

[35] F. R. Hampel. “A General Qualitative Definition of Robustness”. In: The An-
nals of Mathematical Statistics 42.6 (1971), pp. 1887–1896. ISSN: 00034851.
URL: http://www.jstor.org/stable/2240114.

[36] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau,M. Brucher,M. Perrot, and E. Duchesnay. “Scikit-learn:Machine
Learning in Python”. In: Journal of Machine Learning Research 12 (2011),
pp. 2825–2830.

[37] H. Gadd and S. Werner. “Heat load patterns in district heating substations”. In:
Applied Energy 108 (2013), pp. 176–183. ISSN: 0306-2619.

145

https://doi.org/https://doi.org/10.1016/j.autcon.2021.103624
https://doi.org/https://doi.org/10.1016/j.autcon.2021.103624
https://www.sciencedirect.com/science/article/pii/S0926580521000753
https://www.sciencedirect.com/science/article/pii/S0926580521000753
https://doi.org/10.1007/978-3-540-71080-6_1
https://doi.org/10.1007/978-3-540-71080-6_1
https://doi.org/10.1007/978-3-540-71080-6_1
https://doi.org/10.1109/2945.981847
http://www.jstor.org/stable/2240114

Paper V
A Graph-based Multi-view Clustering
Approach for Continuous Pattern
Mining

Christoffer Åleskog, Vishnu Manasa Devagiri, Veselka Boeva

In: Recent Advancements inMulti-ViewData Analytics, Ed. byW. Pedrycz
and SM. Chen. Cham: Springer International Publishing, 2022, pp.
201–237, DOI: 10.1007/978-3- 030-95239-6_8

Abstract

Today’s smart monitoring applications need machine learning mod-
els and data mining algorithms that are capable of analysing and mining
the temporal component of data streams. These models and algorithms
also ought to take into account the multi-source nature of the sensor data
by being able to conduct multi-view analysis. In this study, we address
these challenges by introducing a novel multi-view data stream cluster-
ing approach, entitled MST-MVS clustering, that can be applied in dif-
ferent smart monitoring applications for continuous pattern mining and
data labelling. The proposed approach is based on the Minimum Span-
ning Tree (MST) clustering algorithm. This algorithm is applied for par-
allel building of local clustering models on different views in each chunk
of data. The MST-MVS clustering transfers knowledge learnt in the cur-
rent data chunk to the next chunk in the form of artificial nodes used by
the MST clustering algorithm. These artificial nodes are identified by
analyzing multi-view patterns extracted at each data chunk in the form
of an integrated (global) clustering model. We further show how the ex-
tracted patterns can be used for post-labelling of the chunk’s data by in-
troducing a dedicated labelling technique, entitled Pattern-labelling. We
study and evaluate the MST-MVS clustering algorithm under different
experimental scenarios on synthetic and real-world data.
Keywords: Data stream, Clustering analysis, Pattern mining, Minimum
spanning tree

147

1 Introduction
Data collected today in smart monitoring applications have a heterogeneous nature
due to the fact that they are originated from multiple sources, more often providing
information about different perspectives, views or perceptions of the monitored phe-
nomenon, physical object, system. In addition, in many real-world applications (e.g.,
learning from sensor data streams) the availability of relevant labelled data is often
low or even non-existing. In this context, one challenge is how the newly arriving in-
formation can be taken into account in the learning or monitoring phase and how the
built model can be used for analysis and pattern mining of the temporal component
of data streams. This problem however, cannot be considered and solved individu-
ally. It is also necessary to take into account the multi-source nature of the sensor
data by developing machine learning (ML) techniques that can distribute model train-
ing and evaluation among multiple data sources or views. Some recent works in the
data mining field address these challenges [1], [2], [3]. For example, MV Multi-
Instance Clustering [1] is a novel multi-view stream clustering algorithm that han-
dles the multi-source nature of today’s data by clustering each data view separately,
thereby inducing a parallel part to the process. The knowledge from different views
is integrated using Formal Concept Analysis (FCA) [4]. MVStream [3], is another
multi-view stream clustering approach. It combines the data points from different
views by transferring them into a common kernel space and identifying the common
support vectors for all views. More related studies are discussed in Section 2.3.

Inspired by the above discussed challenges and current need in the area, we pro-
pose a novel multi-view data stream clustering approach that can be applied in differ-
ent smart monitoring applications for continuous pattern mining and data labelling.
This approach is based on the Minimum Spanning Tree (MST) clustering algorithm,
which is used at each data chunk for parallel building of local clustering models on
different data views. Knowledge between chunks is transferred in the form of artifi-
cial nodes used by the MST clustering algorithm. The artificial nodes are identified
by analyzing the global model that is built at each data chunk by integrating view
patterns extracted from the local clustering models. The proposed approach, entitled
MST-MVS clustering algorithm, can be considered as a communication-efficient and
privacy-preserving solution, since it is not the chunk’s entire data that is transferred
for building the global model. The latter one consists of integrated multi-view pat-
terns that can be used for post-labelling of the current chunk’s data.

Different configurations of the MST-MVS clustering algorithm are studied and
evaluated under different experimental scenarios on two types of data: synthetic and
real-world. We study two different approaches for identifying artificial nodes that
are used to seed the MST algorithm producing local clustering models at the next
data chunk. In addition, we investigate how the knowledge transfer affects the per-
formance of the proposed MST-MVS algorithm by comparing it with an algorithm
version that does not use artificial nodes to seed the clustering at the next data chunk.

148

We also propose a pattern-based labelling (Pattern-labelling) technique, which is eval-
uated and benchmarked to an approach relying on Convex Non-negative Matrix Fac-
torization (CNMF). Finally, the patterns extracted by the proposed algorithm from
the sensor dataset used in our experiments are benchmarked to the results produced by
other state-of-the-art algorithm, MV Multi-Instance Clustering, on the same dataset.

The evaluation of the MST-MVS clustering algorithm demonstrates a higher per-
formance on the synthetic data than on the real-world data. This result is logical, since
in comparison with the synthetic data, real-world data usually does not present a per-
fect clustering structure, but often has outliers and overlapping clusters. In addition,
the labelled real-world dataset used in our experiments is not specifically designed for
multi-view scenarios and this might have affected the performance of our multi-view
clustering algorithm. The transfer of knowledge feature is shown to have a positive
effect on the performance of MST-MVS algorithm. The proposed Pattern-labelling
technique outperforms the CNMF-labelling algorithm in the conducted experiments
both in terms of computational time and results obtained.

The rest of the paper is organised as follows. Section 2 presents the recent work
done in the areas of multi-view clustering and stream clustering followed by the back-
ground in Section 3, which introduces the main concepts and methods used in the
study. The proposed MST-MVS clustering algorithm is presented in Section 4. Then
the data used along with the experimental settings are described in Section 5. This is
followed by results and discussion in Section 6, and conclusion and future work in
Section 7.

2 Related Work
2.1 Multi-view Clustering Algorithms
Multi-view clustering algorithms have been intensively studied in the recent years
and many different algorithms and concepts have been proposed [5], [6], [7], [8].
Most of these algorithms cluster data from different views often into a consensus
model while holding all data in memory.

Many research studies have proposed multi-view clustering algorithms based on
Non-negative Matrix Factorization (NMF) [9], [6], [10], [11]. For example, Liu et al.
combine the objective functions of different views (minimization problems) and add
a consensus part to it [6]. They propose a novel way to use the l1 normalization to
solve the problem of multiple views with NMF by imposing a new constraint to the
objective function. In [10], the authors propose a co-regularized multi-view NMF
approach with correlation constraint for non-negative representation learning. The
proposed approach imposes correlation constraint on the low-dimensional space to
learn a common latent representation shared by different views.

Peng et al. [7] propose a novel multi-view clustering algorithmwithout parameter

149

selections, entitled COMIC. The proposed algorithm projects data points into a space
where the two properties, geometric consistency and cluster assignment consistency,
are satisfied. The data are clustered without any parameters by enforcing a view
consensus onto a connecting graph.

Bendechache and Kechadi [5] propose a distributed clustering algorithm using k-
means. It clusters each view applying the k-means algorithm andmerges overlapping
clusters of different views. This is done multiple times with the same data until
a specified level has been reached. This level is one of the algorithm parameters,
additionally to the number of clusters for each view needed by the k-means algorithm.

Two graph-based multi-view clustering techniques have been recently published
[12, 13]. The first study has proposed an affinity graph representation learning frame-
work for modelling multi-view clustering tasks [12]. The approach consists of two
separate stages. Namely, a robust graph Laplacian from each view is initially con-
structed and then those are fused using the proposed Consistent Affinity Graph Learn-
ing algorithm. In [13], multi-view subspace clustering networks using local and
global graph information are introduced. The autoencoder networks are performed
on different views simultaneously. In that way latent representations that conform to
the linear subspace model can be achieved. Finally, a representation shared among
the views is obtained by integrating the underlying graph information into the self-
expressive layer of autoencoder networks.

2.2 Stream Clustering Algorithms
Ghesmoune et al. [14] discuss previous works on data stream clustering problems,
and highlight the most relevant algorithms proposed in the literature to deal with
these problems [15], [16], [17], [18].

Coa et al. [17] propose an iterative clustering algorithmwithNMF, entitledONMF.
It uses the property in [19], that states that NMF is equivalent to k-means if the or-
thogonality constraint HHT = I is included in the minimization problem. The
ONMF algorithm clusters temporally changing data streams, divided into chunks,
where each chunk is clustered by applying the orthogonal NMF. Then the results
are propagated to the next chunks’ calculations to retain the knowledge found in the
previous chunks. This process is continued until all data has been clustered.

In [16], the evolution of the data is addressed by dividing the clustering process
into two components: online and offline. The online component periodically stores
detailed summary statistics, while the offline component generates the final clusters.
Similar solutions are proposed in [15], [18].

Wang et al. [20] has proposed an algorithm, entitled SVStream. It is a predecessor
of MVStream [3], discussed in Section 2.3, and is similar to its successor by apply-
ing the Support Vector Clustering (SVC) to cluster the data. The difference in this
algorithm when compared with its successor, excluding the multi-view part, is how

150

SVStreammerges the spheres created by the current and next data chunks. SVStream
updates the kernel space, where the sphere is clustered after each new data chunk. It
removes old support vectors that could affect the clustering and merging, and updates
spheres accordingly, thereby transferring knowledge of the view’s correlation to the
next data chunk.

2.3 Multi-view Stream Clustering Algorithms
As it is discussed in the introduction, the research field that applies multi-view clus-
tering analysis on streaming data is still relatively new. The study of Shao et al.
published in [21] is seen as one of the first articles that has discussed the idea of
sectioning data into different chunks for conducting multi-view clustering. In [22],
NMF is used and showed that under certain constraints it can be used for clustering.
A detail description can be found in [19]. The proposed version of the NMF algo-
rithm is combined with itself to create a new minimization problem, where different
views could be inputted, and a consensus matrix describing the clustering structure
could be generated. The views are divided into chunks, and for each new chunk, the
algorithm generates a new consensus matrix with the information from the consensus
matrix of the previous chunk [19].

A newmulti-view stream clustering algorithm, entitled MVStream, has been pro-
posed in [3]. It is similar to the approach of Shao et al. [21], but uses the SVC al-
gorithm [23], adjusted to unsupervised data with the Position Regularized Support
Vector Domain Description (PSVDD) [24]. It works by combining and transforming
all data points from the different views into a common kernel space (global model)
and, from this space finding the common support vectors for all views. These sup-
port vectors are transformed back to each view’s space, resulting in the contours of
different arbitrary clusters. The algorithm also transfers knowledge between chunks
by incorporating the previous chunks support vectors as data points in the current
chunks views, thereby retaining the view’s correlations in the previous chunks.

Devagiri et al. [2], [1] have proposed two of the recent algorithms in the field
of multi-view stream clustering. The first algorithm [2], is entitled MV Split-Merge
Clustering and is based on a previous work of the authors developing a stream cluster-
ing algorithm, called Split-Merge Clustering [25]. The MV Split-Merge Clustering
algorithmworks by updating the local (views’) models in each chunk by applying the
Split-Merge Clustering on the local models produced at the previous and current data
chunks. Then the updated local models are integrated into a global model by apply-
ing Formal Concept Analysis (FCA) [4]. The algorithm proposed in [1], entitled MV
Multi-Instance Clustering, is more effective by addressing the limitations of [2]. The
MV Multi-Instance Clustering uses Bipartite Multi-Instance clustering algorithm to
update the local models which proved to provide better results. In addition, it also
uses closed patterns to mine the most frequent patterns or concepts from the formal

151

context which is obtained using FCA. This reduces the size of the lattice generated
in the global model making it easy to interpret and analyse.

3 Background
3.1 Minimum Spanning Tree Clustering
The Cut-Clustering algorithm is a graph-based clustering algorithm, based on min-
imum cut tree algorithms to cluster the input data [26]. It has been used in other
clustering algorithms, e.g., [27],[28]. The input data is represented by a similarity (an
undirected) graph, where each node is a data point and two nodes are connected if the
similarity between the corresponding data points is positive, and the edge is weighted
by the corresponding similarity score. The algorithm works by adding an artificial
node to the existing graph and connecting it to all nodes in the graph with a value α.
A minimum spanning tree is computed, and the artificial node is removed. The clus-
ters consist of the nodes connected after the artificial node has been removed. The
pseudo-code of Minimum Spanning Tree (MST) clustering algorithm is presented in
Algorithm V.1.

Algorithm V.1Minimum Spanning Tree Clustering
1: procedureMSTCLUSTERING(G(V, E), α)
2: Let V ′ := V ∪ t.
3: for v ∈ V do
4: Connect t to v with edge of weight α
5: end for
6: Let G′(V ′, E′) be the expanded graph after connecting t to V
7: Calculate the minimum spanning tree T ′ of G′

8: Remove t from T ′

9: return All connected components as the clusters of G
10: end procedure

Lv et al. [29] propose another MST-based clustering algorithm, entitled CciMST.
CciMST starts by finding a MST and calculating pairwise Euclidean and geodesic
distances of all pairs of data points. The graph and distances are then used for finding
the cluster centers based on the density and variances of the data points in the graph.
The algorithm ends by determiningwhich edges in the graph should be cut, producing
and comparing two results, choosing the one where the clusters have a bigger gap
between them.

Many different algorithms for finding a minimum spanning tree (MST) of the
complete graph exist. The two well-known greedy algorithms for computing MST
are Kruskal’s and Prim’s algorithms. The algorithm we use in our study is Kruskal’s

152

algorithm [30]. It works by sorting all the graph edges in increasing order of weights
and choosing the shortest edge. The two nodes connected by the shortest edge are
combined to the tree. The process repeats by finding a new shortest edge that does
not create a cycle. These steps are continued until m− 1 (m is the number of graph
nodes) edges are selected, i.e. a MST is found.

The value of α is an input parameter for the Cut-Clustering algorithm and it plays
a crucial role in the quality of the produced clusters. Namely, the value of this pa-
rameter has an impact on how many clusters the algorithm will produce. It can be
observed that as α goes to infinity, the Cut-Clustering algorithm will produce only
one cluster, namely the entire graph. On the other extreme, as α goes to 0, the cluster-
ing algorithm will produce m trivial clusters (all singletons), where m is the number
of graph nodes. For values of α between these two extremes the number of clusters
will be between 1 and m, but the exact value depends on the graph structure and the
distribution of the weights over the edges. What is important though, is that there is
no direct correlation between the number of clusters and α value.

There are different ways to identify theα value. For example, a binary-like search
algorithm is used in [26] to determine the optimal value for α. This is done by ex-
ecuting the algorithm for each loop and choosing the most stable α value. In this
study, we use the mean α value that is calculated by the formula:

α = 1
m

m∑
i=1

m∑
j ̸=i

wij

deg(vi)
, (V.1)

wherem is the number of nodes in the graph,wij is the weight of the edge connecting
nodes i and j, and deg(vi) is the degree of node i.

3.2 Non-negative Matrix Factorization
Traditional NMF [22] approximates two non-negative matrices W ∈ Rn×k

+ and H ∈
Rk×m

+ into a non-negativematrixX ∈ Rn×m
+ . This results in aminimization problem

with the objective:
X ≈WH. (V.2)

Formerly used to save space in memory, the algorithm can also be used for clustering
according to Ding et al. [19]. It is equivalent to k-means if the constraint HHT = I
is additionally imposed on the objective function. Therefore, when NMF is used for
clustering, k is the specified number of clusters to be found, columns of W holds the
centroids of the clusters, and the rows with the maximum value in the columns of H
describe which cluster a data point belongs to.

Convex Non-negative Matrix Factorization (CNMF) [31] is a modification of
the traditional NMF that results in better centroids in W . CNMF approximates a
mixed-sign data matrix X into a matrix W and non-negative matrix H . W is also
divided into one mixed-sign data matrix S and a non-negative matrix L, where L is

153

the labelling matrix and S is a data matrix. An extensive explanation of S and how
it can be used for missing data can be found in [32]. However, since missing data is
not considered in this study, S ≡ X . Then the factorization is in the following form:

F = X±L+ and X± ≈ FH+. (V.3)

CNMF imposes the constraint ∥L∥1 = 1 to lift the scale indeterminacy between L
and H so that Fi is precisely a convex combination of the elements in X . The ap-
proximation is quantified by the use of a cost function that is constructed by distance
measures. Usually the square of the Euclidean distance, also known as the Frobenius
norm, is used [33]. The objective function is therefore, as follows:

min
W,H

L = ∥X −XLHT ∥2F such that L ≥ 0, H ≥ 0, ∥L∥1 = 1, (V.4)

where X ∈ Rn×m is the data to be clustered, L ∈ Rm×k and H ∈ Rk×m are
non-negative matrices, n is the dimensionality of the feature space, m is the number
of data points, and k is the dimension to reduce to. The symbols ∥.∥2F and ∥.∥1
denotes the Frobenius norm and Manhattan norm [34] of the expression it encases,
respectively.

3.3 Cluster Validation Measures
Cluster validation measures have a very important role in cluster analysis by provid-
ing means for validation of clustering results. A range of different cluster validation
measures are published in the data mining literature [35], [36]. They can be divided
into two major categories: external and internal [37]. External validation measures
have the benefit of providing an independent assessment of the clustering quality,
since they evaluate the clustering result with respect to a pre-specified structure. In-
ternal validation techniques on the other hand avoid the need for using such additional
knowledge. Namely, they base their validation on the same information used to de-
rive the clusters themselves. Internal measures can be split with respect to the spe-
cific clustering property they reflect and assess to find an optimal clustering scheme:
compactness, separation, connectedness, and stability of the cluster partitions.

External validation measures can be of two types: unary and binary [38]. Some
authors consider a third type of external validity approaches, namely information
theory [39]. Unary external evaluation measures take a single clustering result as
the input, and compare it with a known set of class labels to assess the degree of
consensus between the two. Comprehensive measures like the F-measure provide
a general way to evaluate this [40]. In addition to unary measures, the data-mining
literature also provides a number of indices, which assess the consensus between a
produced partitioning and the existing one based on the contingency table of the pair-
wise assignment of data items. Most of these indices are symmetric, and are therefore

154

equally well-suited for the use as binary measures, i.e., for assessing the similarity
of two different clustering results. Probably the best known such index is the Rand
Index [41], which determines the similarity between two partitions as a function of
positive and negative agreements in pairwise cluster assignments. A third class of
indices is based on concepts from information theory [42]. Information theoretic
indices assess the difference in shared information between two partitions. One of
commonly used information theoretic indices is the adjusted mutual information [43].

The clustering algorithms usually do not perform uniformly well under all scenar-
ios. Therefore, it is more reliable to use a few different cluster validation measures in
order to be able to reflect various aspects of a partitioning. In this study, we use five
different cluster validation measures to evaluate the clustering results generated in
our experiments: one binary external measure (Adjusted Rand Index), three external
measures related to information theory (Adjusted Mutual Information, Homogenity
and Completeness) and one internal cluster validation measure (Silhouette Index).
The definitions of the used evaluation measures are given hereafter.

3.3.1 Silhouette Index
Silhouette Index (SI), introduced in [44], is a cluster validation index that is used to
judge the quality of any clustering solution C = C1, C2, . . . , Ck. Suppose ai repre-
sents the average distance of object i from the other objects of its assigned cluster,
and bi represents the minimum of the average distances of object i from objects of
the other clusters. Subsequently the Silhouette Index of object i can be calculated
by:

s(i) = (bi − ai)
max{ai, bi}

. (V.5)

The overall Silhouette Index for clustering solution C of m objects is defined as:

s(C) = 1
m

m∑
i=1

(bi − ai)
max{ai, bi}

. (V.6)

The values of Silhouette Index vary from -1 to 1, and higher values indicate better
clustering results, while a negative value shows that there are wrongly placed data
points within the clustering solution. As the Silhouette Index compares the distances
from instances to its respective cluster against the distance to the nearest cluster, it
assesses the separation and compactness between clusters.

The proposedMST-MVS clustering algorithm applies the SI analysis at each data
chunk for assessing the quality of generated local clustering models. Only the clus-
tering models that satisfy some preliminary defined threshold are used for building
the integrated matrix of multi-view patterns (see Section 4).

155

3.3.2 Adjusted Rand Index
Adjusted Rand Index (ARI) is used for evaluating a clustering solution and is adjusted
for chance [45]. It works by calculating the Rand Index (RI) [41], i.e., computing the
similarity measure between two clustering solutions by counting pairs of samples
assigned to the same or different clusters. Essentially, it calculates the number of
agreeing pairs divided by the total. Then adjusting it for chance, as shown in Eq. V.7.
A value of 1 indicates that the two clusterings are identical, while close to 0 shows
random labeling independently of the number of clusters and samples.

ARI =
∑

ij

(nij

2
)
−
[∑

i

(ai
2
)∑

j

(bj

2
)]

/
(nij

2
)

1
2

[∑
i

(ai
2
)

+
∑

j

(bj

2
)]
−
[∑

i

(ai
2
)∑

j

(bj

2
)]

/
(nij

2
) , (V.7)

where
∑

ij

(nij

2
)
is the RI of samples i and j, ai is the sum of the pair of samples w.r.t

sample i, the same for bj but for sample j. The minuend of the denominator is the
expected RI, while the subtrahend is the maximum RI of samples i and j.

3.3.3 Adjusted Mutual Information
Adjusted Mutual Information (AMI) score is an adjustment accounting for chance of
theMutual Information (MI) [43]. It is ameasure of similarity between two clustering
solutions, and the adjustment for it is similar to that of ARI. Replacing RI of samples
i and j byMI, and the maximum value of RI by the maximum value of the entropy of
the predicted and true labels. The calculation of the expected value is pretty complex,
and therefore, it is not provided herein. A detailed description can be found in [43].
AMI scores a clustering solution from 0 to 1, where 1 stands for a perfect match and
0 shows a random partition.

3.3.4 Homogeneity and Completeness
Homogeneity and Completeness are two other external cluster validation metrics,
both components of the V-Measure [46]. The latter one is an entropy-based exter-
nal cluster evaluation measure that introduces these two complementary criteria to
capture desirable properties in clustering tasks. Homogeneity is satisfied by a clus-
tering solution if all of its clusters consists of only data points which are members
of a single class. Opposite, a clustering solution satisfies Completeness if all the
data points that belong to a given class are assigned to the same cluster. Note that
increasing the Homogeneity of a clustering solution often results in decreasing its
Completeness. The calculations of these concepts are complex, and therefore, are
not provided herein. A detailed explanation of how they work can be found in [46].

156

4 MST-MVS Clustering Algorithm
In this work, we study a streaming scenario, where a particular phenomenon (ma-
chine asset, patient, system etc.) ismonitored undern different circumstances (views).
Let us assume that the data arrives over time in chunks, i.e. a landmark window
model according to the classification in [47]. In the landmark window model, the
whole data between two landmarks form the current chunk are included in the pro-
cessing. In our considerations each data chunk (window) t can contain different
number of data points. Assume that chunk t contains Nt data points. In addition, in
our multi-view context each chunk can be represented by a list of n different data ma-
trices Dt = {Dt1, Dt2, . . . , Dtn}, one per view. Each matrix Dti (i = 1, 2, . . . , n)
contains information about the data points in the current chunk t with respect to the
corresponding view i. Further assume that Ct = {Ct1, Ct2, . . . , Ctn} is a set of
clustering solutions (local models), such that Cti (i = 1, 2, . . . , n) represents the
grouping of the data points in tth chunk with respect to ith view, i.e. a local model
built on data set Dti.

The proposed MST-MVS algorithm’s main idea is schematically illustrated in
Figure 1. It has an initialization phase that is performed on the available historical
data or on the first data chunk. Then on each subsequent data chunk the algorithm
goes through a sequence of six different operational stages. At Stage 1 the MST
clustering algorithm is applied for parallel building of local clustering models on dif-
ferent data views. Then at the Stage 2 the produced clustering solutions are evaluated
and only ones satisfying a predefined evaluation criteria are considered in Stage 3 for
extracting individual view patterns. This makes our algorithm more robust to noisy
and low-quality data, since the low-evaluated views’ clustering solutions do not con-
tribute to the global clustering model. The extracted patterns are used at the next
stage to build an integrated matrix of multi-view profiles (Stage 4). In the proposed
algorithm knowledge between chunks is transferred in the form of artificial nodes
used by the MST clustering algorithm. The artificial nodes are identified at Stage 6
by analyzing the global model that is built at Stage 5 by using MST clustering algo-
rithm on the integrated matrix. The six stages are described in more details hereafter
and also illustrated by an example in Figure 2.

The MST-MVS clustering algorithm goes through the following six operation
stages (see Figure 2) for each data chunk t (t > 1):

Input: Newly arrived data Dt, set of artificial nodes At−1 identified at chunk
t− 1, clustering quality threshold Θt.

1. Views’ clustering: Produce a clustering solution Cti on each data matrix Dti

(i = 1, 2, . . . , n) of tth chunk by applying MST clustering algorithm with a
parameter A(t−1)i, where A(t−1)i are artificial nodes’ values corresponding to

157

Figure 1: A high level overview of the proposed MST-MVS clustering algorithm for three data chunks A, B and
C. The figure depicts how the knowledge extracted from the previous data chunk is used in analyzing a new
data chunk.

Figure 2: A schematic illustration of different stages of the proposed MST-MVS clustering algorithm. The ex-
ample presents a three-view scenario, where V1, V2, V3 represent the views, and C1, C2, C3, C4, C5, C6
represent different clusters across views. Local clustering models in each view are built in Stage 1, followed by
evaluating and selecting the local models in Stage 2, these are then used for pattern extraction and building
integrated matrix in Stages 3 & 4. A global model is built in Stage 5 followed by identifying artificial nodes in
Stage 6.

view i and chunk t− 1.

2. Cluster models’ evaluation: At this stage the quality of each produced clus-
tering solution Cti (i = 1, 2, . . . , n) is evaluated by applying SI analysis, i.e.
s(Cti) is calculated for each view i = 1, 2, . . . , n. A set of selected clustering
solutions C

′
t = {Cti | s(Cti) > Θt} (C

′
t ⊆ Ct) satisfying the given threshold

Θt is then built. Note that other internal cluster validation measures or an en-
semble of few measures can be used in this stage.

3. Pattern extraction from the individual views: Consider only local cluster-
ing models which satisfy the given threshold Θt, i.e. the set C

′
t built at the

158

previous stage. The medoids of each Cti ∈ C
′
t are identified and extracted.

4. Integrate the individual views’ patterns: The patterns extracted from the lo-
cal models of C

′
t are used at this stage to build an integrated matrix, denoted

byMt, that contains the multi-view profiles of the identified medoids. A detail
explanation of the integration stage can be found in Section 4.1.

5. Build a global model: In order to build a global model the multi-view data
points of Mt are clustered by applying MST clustering algorithm. The built
global model, denoted byCM

t , consists of a number of clusters of similar multi-
view data points. Each cluster, as seen in Figure 2, may be interpreted as a
multi-view pattern that presents a relationship among individual views’ pat-
terns (further information about multi-view pattern extraction can be found in
Section 4.2). This information, as it will be discussed further in this study, can
be used for post-labelling of Dt (see Section 4.5).

6. Identify artificial nodes: The integrated matrixMt and the built global model
CM

t are used to identify the set of artificial nodes At that will be used to seed
the MST clustering algorithm at chunk t + 1. Two different techniques for
finding the artificial nodes are developed and studied. Their descriptions and
pseudo-codes can be found in Section 4.3.

Output: The set of multi-view patterns CM
t , and the set of artificial nodes At.

The following sub-sections describe some of the complex steps of the algorithm,
followed by an estimation of the computational complexity of the algorithm in Sec-
tion 4.6. Section 4.1 explains the multi-view integration procedure conducted in
stage 4 of the MST-MVS algorithm. Sections 4.2 and 4.3 supply with additional de-
tails about stages 5 and 6, respectively. Sections 4.4 and 4.5 are devoted to the two
labelling (CNMF-based and Pattern-based) algorithms studied in this work and used
in the evaluation of the algorithm performance.

4.1 Multi-view data integration
The integrated matrix Mt of chunk t (t = 1, 2, . . .) is built using the medoids of the
approved views’ clustering solutions, i.e. ones in set C

′
t built at stage 3 of the MST-

MVS algorithm. A medoid is seen as a representative of a cluster and each clustering
solution is summarized by its medoids. In that way, the proposed algorithm can be
considered as a communication-efficient and privacy-preserving solution, since we

159

do not need to transfer complete data from each view in order to build the global
model CM

t . The medoids of each clustering solution in C
′
t are only transferred, i.e.,

privacy is preserved. The proposed algorithm can also be interpreted as a distributed
clustering, since it clusters and evaluates multiple data views (sources) in parallel.

The integrated matrix Mt (t = 1, 2, . . .) is built using the extracted data points
from the views, where each column in the matrix is a medoid of a clustering solution
in C

′
t . As one can see in Figure 2, each medoid takes up one column, and each row

presents one feature vector. For example, if C1 in Figure 3 is a medoid extracted
from view 1 (the gray area in Figure 3), the rest of the column (view 2 and view 3)
contains the remaining features of this data point, namely ones extracted from the
other two views. In general, if a medoid is extracted from one view, the data points
corresponding to that medoid in the other views are also used to build the multi-view
data point, i.e. to fill in the respective column in Mt. Evidently, all features of a
medoid (in this case C1) are placed in the same column. As we can see in Figure 2
the third view (V3) does not supply any medoids, since the view has not passed the
evaluation criteria in stage 2.

Figure 3: Example of one column from the integrated matrix, where a multi-view data point (Column C1 from
Figure 2) is built up by using the features' values from all the views that correspond to that data point.

4.2 Extraction of multi-view patterns
Remember that the matrix Mt of chunk t (t = 1, 2, . . .) integrates the medoids of
approved views’ clustering solutions that are in C

′
t . This matrix is used in stage 5

of the MST-MVS clustering algorithm to build the global model CM
t by clustering

Mt with MST clustering algorithm. The built global model consists of clusters of
similar multi-view data points. Note that each data point in Mt is a medoid in a
view’s clustering solution belonging to C

′
t , i.e. it is a pattern extracted from the

respective view. Therefore, the clusters of the global model CM
t present multi-view

patterns. The latter ones may be interpreted as most typical relationships among the
views supported by the data of the current chunk.

As it is mentioned above, MST clustering algorithm is used for clustering the
integrated matrix Mt. However, one problem arises from this approach, namely,
what value should α take? Note that the integrated matrix is usually very small, built
just from the medoids of the approved views’ clustering solutions. This implies that

160

each cluster in the global model would often have only one medoid in it, representing
a cluster from one view. As it was stated in Section 3.1, mean α values can be chosen.
However, this choice depends more on the medoids themselves than the results from
each view. Mean α is the average value α can take, producing often wrong numbers
of clusters when there is an unbalance of the weights between nodes, focusing on the
overall average.

In this work, we propose an alternative of the α value solution, entitled Longest
Edges (LEdges). LEdges makes use of how the MST algorithm works. Instead of
calculating α for an artificial node’s edges, it builds a MST on the data points of the
integrated matrix Mt and generates the global clustering model CM

t by cutting the
longest edges of the built tree. A detail explanation of LEdges is provided in the
forthcoming section.

4.3 Transfer of knowledge through artificial nodes
At the initialization phase, first (or historical) data chunk of each view is clustered
by applying the MST clustering algorithm with α as an input parameter. At each
subsequent chunk t (t > 1) the integrated matrix Mt and the built global model CM

t

are used to identify data points that are transferred to data chunk t + 1. These are
used as artificial nodes by the MST clustering algorithm that is applied to build the
local clustering models of chunk t + 1. This knowledge transferred in the form of
artificial nodes influences the t + 1 chunk’s local clustering models. Particularly, the
transferred artificial nodes seed and guide the clustering of the t + 1 chunk to be
close/similar to the previous chunk’s results, but still the clustering solutions can be
modified since they are influenced by the data points in the t + 1 data chunk. In that
way, the knowledge learnt through the processing of current data chunk (t) is used to
support the clustering of the next chunk data (t + 1).

In the process of algorithm design, two different techniques for finding the ar-
tificial nodes are developed and studied: Boundary Nodes (BNodes) and LEdges.
The main difference between BNodes and LEdges is the strategy that is applied for
calculating the artificial nodes.

BNodes uses the centroids of global clustering model (CM
t) built at stage 5 of

the MST-MVS algorithm to calculate the set of artificial nodes (At). An artificial
node is placed between two cluster centroids, i.e. it can be interpreted as a bound-
ary node between two clusters. The pseudo-code of BNodes algorithm is shown
in Algorithm V.2. Note that this strategy of finding artificial nodes does not guaran-
tee the optimal solution for all possible scenarios. For example, it can happen three
clusters centroids to be in a straight line. Then one of the resulting artificial nodes
will be placed on the middle centroid, splitting the central cluster in two. In practice,
the possibility of this scenario to happen is very low.

As the name suggests, LEdges uses the longest edges of the MST generated from

161

Algorithm V.2 Boundary Nodes
1: procedure BNODES(CM

t)
2: At := ∅.
3: Pairs_of_centroids := All pairs of centroids of CM

t

4: for (u, v) ∈ Pairs_of_centroids do
5: At← Average(u, v)
6: end for
7: return At

8: end procedure

the integrated matrix (Mt) that is created at stage 4 of the MST-MVS algorithm. The
artificial nodes are the middle points of the longest edges. However, this technique
requires to know in advance how many longest edges to use. Each data view is al-
ready clustered and this information can be used to determine the number of artificial
nodes, denoted by kA. For example, it can be equal to the average number of clusters
in the selected views, i.e. kA =

∑
Cti∈C

′
t
| Cti |/ | C

′
t |, where | . | represents the set

cardinality. The LEdges algorithm pseudo-code is given in Algorithm V.3.
As one can see in Algorithm V.2, BNodes returns the artificial nodes by using the

centroids of the global model CM
t . The latter is built by clustering the integrated ma-

trixMt. In comparison LEdges, as a variation of MST clustering algorithm, finds not
only the artificial nodes, but also clusters the integrated matrix Mt. Hence stages 5
and 6 are merged in the configuration of the MST-MVS algorithm using LEdges
technique.

The artificial nodes returned by LEdges and BNodes are split into components
corresponding to different views, e.g., the features belonging to view 1 are extracted
from the artificial nodes and used in the clustering of view 1’s data points in the next
chunk. This allows MST clustering algorithm to be seeded with artificial nodes in
each view.

4.4 CNMF-based labelling algorithm
In this work, we propose and study two different techniques for post-labelling of the
data points in chunkDt (t = 1, 2, . . .). The first technique uses CNMF, with fixedX
and F matrices (see Eq. V.3). CNMF is chosen over the traditional NMF as it allows
negative values [31]. Let F consists of the centroids of the global model CM

t built
at stage 5 and X ≡ Dt (t = 1, 2, . . .). Then by applying Eq. V.4, the rows with the
maximum values of a column in H gives the label of each data point (columns in H).

Note that the CNMFmethod is slow and is not very accurate. CNMF initiates two
matrices L andH with random values, resulting in different approximations for each
execution. To rectify this, the CNMF algorithm is executed multiple times, and the

162

Algorithm V.3 Longest Edges
1: procedure LEDGES(Mt, kA)
2: At := ∅
3: removed_edges := ∅
4: G(V, E) := complete graph of Mt, i.e. V ≡Mt

5: MST := Kruskal(G)
6: sorted(E) := sort edges of G in decreasing order
7: for (e ∈ sorted(E)) ∧ (| removed_edges |≤ kA) do
8: remove e from MST
9: removed_edges← e
10: end for
11: for e ∈ removed_edges do
12: At← Average(u, v)
13: end for
14: Build global clustering model CM

t from MST
15: return (At, CM

t)
16: end procedure

instance which gives the lowest Frobenius norm |X ≈ FHT
+| is used. However, this

increases the time needed for labelling of the data points. Therefore, we propose in
Section 4.5 a new algorithm for labelling the data chunkDt, entitled Pattern-labelling.
This labelling technique uses the cluster patterns identified by the global model CM

t ,
and maps data points to the patterns they match.

4.5 Pattern-based labelling algorithm
In this study, we propose a new algorithm for post-labelling of the data points in
the current data chunk, entitled Pattern-labelling. The proposed algorithm uses the
extracted patterns at each data chunk, which are the ones determined by the clusters
of the global model. These patterns are mapped to the chunk’s data points to identify
matches. Each pattern’s index (cluster label) is used as the label for all data points
that match it.

In order to execute the Pattern-labelling algorithm on data chunk Dt it is neces-
sary to format the global clustering model CM

t . Remember that each cluster in CM
t

can be considered as a multi-view pattern and all data points in datasetDt that match
to it have to get its cluster label. Therefore each multi-view pattern (cluster) of CM

t

has to be presented as a sequence of its views’ clustering labels. The Pattern-labelling
algorithm pseudo-code is shown in Algorithm V.4. Note that it is also necessary to
translate each data point Dt[i] (i = 1, 2, . . . , Nt) into a list of its views’ clustering
labels. In addition, assume that each multi-view pattern is denoted by CM

t [j], where
j = 1, 2, . . . , | CM

t |.

163

Algorithm V.4 Pattern-labelling algorithm
1: procedure PATTERN_LABELLING(CM

t , Dt)
2: Dlabelled

t := each data point in Dt is initialized to label −1
3: for i ∈ {1, 2, . . . , Nt} do
4: Dt[i] is translated into a sequence of its views’ clustering labels
5: for j ∈ {1, 2, . . . , | CM

t |} do
6: CM

t [j] is presented by a sequence of its views’ clustering labels
7: if Match(Dt[i], CM

t [j]) ̸= -1 then Dlabelled
t [i] := Match(Dt[i],

CM
t [j])

8: end if
9: end for
10: end for
11: return Dlabelled

t

12: end procedure

If a data point does not match any of the patterns, it is seen as an outlier in the
data. The definition of an outlier in this study is a data point that is hard to be grouped
in any of the clusters. One view might assign it to one global cluster, and another
view assigns the data point to another global cluster. For this reason, the data point
will not match any pattern and is considered as an outlier, hence it is assigned the
label −1.

4.6 Computational Complexity
The computational complexity of the proposed MST-MVS clustering algorithm is
not easy to estimate due to its complexity involving different stages, variety of views,
and dimensionality of the data. Therefore, we propose a separate estimation of the
computational complexity for each stage of the core algorithm.

1. Views’ clustering: The clustering of the views have a computational time com-
plexity ofO(nN2

t +nNt +nNt log Nt), whereNt is the number of data points
in data chunk t and n is the number of views. The first part, O(nN2

t), is the
identification of the medoids for all views. The second part, O(nNt), presents
the creation of the complete graphs for all views. The third part stands for
the complexity of Kruskal’s algorithm for all views, i.e. O(nNtlogNt). The
computational complexity of this stage of the algorithm can be approximated
to O(N2

t), since n << Nt and Nt < Nt log Nt < N2
t .

2. Cluster models’ evaluation: The SI has a quadratic computational time com-
plexity, which means that stage 2 of the algorithm has a computational time
complexity of O(nN2

t). It can be approximated to O(N2
t), since n << Nt.

164

3. Build of the integrated matrix: This includes stages 3 and 4 of the algo-
rithm. The computational complexity of these stages depend on how the cre-
ation of the integrated matrix is implemented. For the implementation used
in this study, the computational time complexity is O(n′n

∑n
i=1 (ni | Cti |)),

where n′ is the number of approved views, | Cti | is the number of clusters in
the local model of view i, and ni is the number of features characterizing view
i.

4. Clustering of the integrated matrix: The clustering of matrix Mt has dif-
ferent time complexity depending on which of the two methods (BNodes and
LEdges) is used.

• If BNodes is used then the computational time complexity is

O(k(kt−2)
t + |Mt | + |Mt | log |Mt |)),

where kt is the number of centroids (clusters) of the global model CM
t ,

and | Mt | is the number of multi-view data points (columns) of matrix
Mt. The first part in the above expression (k(kt−2)

t) presents the time
complexity of BNodes, | Mt | is proportional to the time needed for the
creation of the complete graph, and the third part (| Mt | log | Mt |)
stands behind the calculations of MST.

• If LEdges is used then the computational time complexity is

O(|Mt | +(|Mt | log |Mt |) + avg_kt),

where avg_kt is the average number of clusters found in each local model
for chunk t. The above expression can be simplified to O(| Mt | log |
Mt |).

5. Knowledge transfer: The computational time complexity of stage 6 is O(n).
Due to the linearity of stage 6, it will not be included in the overall complexity
evaluation.

6. Pattern-labelling: The computational complexity of the Pattern-labelling al-
gorithm is approximated to

O(
n∑

i=1
| Cti |+

kt∑
i=1

k
(i)
t + Nt

kt∑
i=1

k
(i)
t),

where | Cti | is the number of clusters in the local model of view i, kt is the
number of clusters in the global model, and k

(i)
t is the number of data points in

global cluster i. The first two parts in the above expression assess the mapping
of the extracted patterns to the real medoids in each view, while the third part
presents the matching of patterns for all data points.

165

Based on the above analysis the overall computational complexity of MST-MVS
algorithm in a configuration using LEdges and Pattern-labelling is approximately
(assuming all views are approved in stage 3):

O(N2
t + n2

n∑
i=1

ni | Cti |+ λ(2 + Nt + logλ)),

where n is the number of views, λ =
∑n

i=1 | Cti |, and Nt is the number of data
points in chunk t. The highest complexity is when all views are approved, resulting
in
∑n

i=1 | Cti | =
∑kt

i=1 k
(i)
t =|Mt |.

5 Data and Experimental Settings
5.1 Data
We study and analyse the performance of the proposed MST-MVS clustering algo-
rithm on synthetic and real-world data. We have used four different datasets: one
synthetic and three real-world. These are listed in Table 1. A detailed description
of the datasets used as well as their interpretation in a multi-view context are given
below.

Table 1: Datasets used in the experiments.

Dataset Type #Samples #Attributes #Classes

Dim32 synthetic 1024 32 16
Cover-type real-world 50000 14 7

One-year Sensor real-world 8664 8 non-labelled
Two-year Sensor real-world 17544 8 non-labelled

5.1.1 Dim32 dataset
A synthetic dataset, Dim32 [48], is built to be used for evaluation of clustering algo-
rithms. Each cluster in Dim32 dataset is well separated, even in higher dimensions.
Initially, this dataset is used in [49] with variations of the number of attributes. The
Dim32 dataset used in our work has 1024 instances with 32 features, and is divided
into 16 different Gaussian clusters. This dataset is chosen to provide a controlled and
well-known environment for studying different configurations of the algorithm. The
experiments conducted on this dataset are presented in Section 5.3.

Dim32 has been interpreted as a two-view dataset in our experiments. The first
16 attributes are assigned to the first view and the rest to the second view.

5.1.2 Forest Cover-type dataset
The second dataset used in our experiments is a subset of the Cover-type dataset [50],
available at the UCI repository [51]. The main motivation for selecting this dataset

166

is the fact that it is well-known and used in many machine learning papers studying
new clustering algorithms [25], [3], [52]. It has been created for classification tasks
with 581012 instances and 54 attributes, divided into 7 clusters. Cover-type is an
unbalanced dataset with 283301 instances for the biggest cluster and 2747 instances
for the smallest. From the total 54 attributes, 44 are binary values, and 40 of these
indicate soil types, the remaining 4 indicate wilderness areas. These 44 binary at-
tributes make the data sparse, since each instance has only 2 values of these 44, rest
of them are 0.

In accordance to the experiments conducted in [25], the 40 binary soil types in
the Cover-type dataset are not considered in the experiments due to their sparsity. In
addition, a sample set of 50000 instances of the Cover-Type dataset is used in the ex-
periments and is divided into four views. The first three attributes, Elevation, Aspect,
and Slope, are assigned to the first view. The next three with the ninth attribute, i.e.
horizontal and vertical distance to nearest surface water features, horizontal distance
to nearest roadways, and wildfire ignition points are assigned to the second view. The
third view includes attributes six, seven and eight in the dataset, corresponding to the
hill shade at 9 am, noon, and 3 pm, respectively. The last view has been assigned to
the remaining four binary attributes indicating Rawah, Neota, Comanche Peak, and
Cache la Poudre wilderness areas.

5.1.3 Real-world sensor datasets
The potential of the proposed algorithm is also demonstrated on real-world data from
a company in the smart building domain. We have used two datasets: one covering
a year (Jan 1st 2019 till Dec 27th 2019) and the other one containing measurements
from two years (Jan 1st 2019 till Dec 31st 2020). The one-year dataset has been used
in [53] for analysing and monitoring the control valve system behaviour. It has also
been used in the evaluation of the MV Multi-Instance Clustering algorithm in [1].

In the smart building domain different types of metrics are collected from a wide
range of sensors available for systems such as heating, ventilation, air conditioning,
and refrigeration. The eight features listed in Table 2, used in [1] and seven of which
also considered in [53], are used in our experiments.

Table 2: Features included in the real-world sensor dataset

View Id Acronyms Feature name Units

Operation
1 SST Secondary Supply Temperature ◦C
2 SRT Secondary Return Temperature ◦C
3 PHL Primary Heat Load kW

Performance
4 VOM Valve Openness Mean %
5 VOS Valve Openness Standard Deviation %
6 SE Sub-station Efficiency %

Context 7 OTM Outdoor Temperature Mean ◦C
8 OTS Outdoor Temperature Standard Deviation ◦C

The available data features are analysed and partitioned in three distinctive views:
system operational behaviour parameters, performance indicators and contextual fac-

167

tors. The features SST, SRT, and PHL are selected to model the system typical opera-
tional behaviour. The system performance can be evaluated by these three indicators:
VOM, VOS, and SE. Finally, the contextual factors are represented by the features:
OTM and OTS. For each view, after removing the outliers using Hampel filter, aver-
aged daily values of the corresponding features are calculated to build daily profiles.

5.2 Data Preparation
In this study, to identify and remove the outliers in each feature of the two Sensor
datasets, Hampel filter [54], a method based on median absolute deviation (MAD)
estimation is applied. In addition, each feature of the four used datasets are standard-
ized using the z-score. Namely, each feature is subtracted by their mean value (x̄)
and divided by the standard deviation (σ), i.e.

z = x− x̄

σ
.

Ten different experimental datasets are generated from each of Cover-Type and
Dim32 datasets and used in the conducted experiments. The obtained results reported
and analysed in Section 6, are averaged values of the ones produced on these experi-
mental datasets. These datasets are generated by randomly shuffling rows in the data,
thereby generating new versions of the datasets. This is done to mitigate the biases in
the results due to the data and in that way to provide with more objective evaluation
of algorithm performance.

5.3 Experiments and Validation
The conducted experiments are categorised into three groups: (i) algorithm config-
uration, (ii) tuning of algorithm parameters, and (iii) evaluation of algorithm perfor-
mance. In the first group, we have performed a series of experiments on Dim32
dataset to study algorithm properties and find its optimal configuration. This con-
figuration, called standard configuration hereafter, has been used in our experiments
evaluating algorithm performance on real-world datasets, i.e. in the third group of
experiments. We have also conducted a number of experiments to fine tune the algo-
rithm’s parameters for each of the used dataset.

5.3.1 Algorithm configuration
As described in Section 4.3, two different algorithms for calculating artificial nodes
have been designed: BNodes and LEdges (see Algorithms V.2 and V.3, respectively).
Two configurations of MST-MVS clustering algorithm, respectively using BNodes
and LEdges to identify artificial nodes, are studied and compared on the Dim32 ex-
perimental datasets.

168

In this work, we have also proposed two different labelling techniques: CNMF-
based labelling and Pattern-labelling (see Sections 4.4 and 4.5, respectively). Those
are also studied and validated on the experimental datasets of Dim32. Since Dim32
dataset is labelled, the results generated in both experiments are evaluated by the four
external cluster validation measures discussed in Section 3.3.

5.3.2 Tuning of algorithm parameters
We have conducted an experiment to find the optimal value of the threshold Θt, an
algorithm parameter for each dataset used. We have explored each dataset by apply-
ing the MST-MVS algorithm on the dataset and plotting together the SI scores of the
views’ clustering solutions produced in each data chunk. The threshold is set as a
trade-off value among the plotted scores.

The data chunk size is usually problem specific. However, Dim32 and Cover-
type datasets are not considered in a concrete applied context. Therefore, we have
performed an experiment to study and tune the chunk size of Cover-type dataset.
The experiment executes the algorithm three times, each time using different chunk
sizes. The data chunk size is chosen based on evaluating the results generated by the
algorithm using the four external cluster validation measures described in Section 3.3.

In case of Dim32 dataset we have determined its data chunk size through reason-
ing, since it is a comparatively small dataset and an experiment is not needed. The
Dim32 dataset is divided into two chunks containing 614 and 410 instances, respec-
tively. As one can observe the first chunk is larger than the second. This is motivated
by the algorithm working mechanism. Namely, the algorithm is initialized by mean
α and transfers over knowledge from the current data chunk to the next. The quality
of the initial clustering will have a significant impact on the upcoming data chunks.
Therefore, the first chunk of Dim32 dataset is bigger, approximately 60% of the
whole dataset, while the second have the remaining 40%.

Note that an experiment is not conducted for the Sensor datasets to determine the
chunks’ sizes. In case of one-year Sensor dataset we have simulated the experimental
scenario used in the evaluation of MV Multi-Instance Clustering [1] to be able to
compare the results. Thus the one-year Sensor dataset is divided into two chunks,
243 and 118, respectively. The first chunk contains the measures gathered during the
months January to August, while the second chunk covers the period from September
to December.

The two-year Sensor dataset is divided into two chunks, each one containing
measurements from a year period. Ourmotivation behind this is to be able to compare
the patterns extracted from two data chunks which are expected to capture similar
seasonal behaviour modes. Note that there are missing values for a few days in the
second year data. These have been removed from the dataset. Due to this the chunk
sizes result in 363 and 334, respectively.

169

5.3.3 Evaluation of algorithm performance
The standard configuration of the proposed MST-MVS algorithm has been studied
and evaluated in a real-world context by using Cover-type and Sensor data. The
standard configuration of the proposed algorithm is executed on the experimental
datasets of Cover-type data and the obtained results are evaluated with the four ex-
ternal cluster validation measures discussed in Section 3.3.

We have investigated how the knowledge transfer affects the performance of the
proposed MST-MVS algorithm by comparing it with an algorithm version that does
not use artificial nodes to seed the clustering at the upcoming data chunk. This ex-
periment has been conducted on the experimental datasets of Cover-type data. The
generated results are evaluated with the four external cluster validation measures.
In addition, the number of clusters of the global model have been compared to the
ground-truth number of clusters to facilitate the interpretation of the results.

Our MST-MVS algorithm evaluates the quality of the clustering solutions pro-
duced on different views’ data at each chunk and select the best ones to build the
global clustering model. In order to study how quality of the data chunks impact the
global result we have conducted an experiment on Cover-type data in which we skip
the evaluation phase and build the global model using all views’ clustering solutions
and then compare the results with the one produced by the original version of the
algorithm.

The one-year Sensor dataset is used to study and benchmark the patterns extracted
by the proposed algorithm to ones identified by MVMulti-Instance Clustering in [1].
We have further studied and analysed the potential of MST-MVS algorithm in the
pattern mining task by applying it on the two-year Sensor dataset.

In order to study how the algorithm’s performance is affected by the quality of
knowledge transferred we have applied the MST-MVS algorithm on the one-year
Sensor dataset in a circular mode, i.e. the algorithm has been executed in 10 con-
secutive iterations by seeding the first data chunk with the artificial nodes extracted
by the last chunk. The results are evaluated by calculating SI scores of the views’
clustering models generated in each data chunk.

5.4 Implementation and Availability
The proposed MST-MVS clustering algorithm is implemented in Python [55]. The
following libraries have been used:

• Scikit-Learn [56] for z-score, and external cluster validation measures: ARI,
AMI, Completeness and Homogeneity.

• NetworkX [57] for Kruskal’s algorithm, and creation of the complete graph.

• Pandas [58] for reading dataset from disk and manipulations of data.

170

• NumPy [59] for fast array manipulations, and operations.

• SciPy [60], utility functions for distance calculations, in this case, Euclidean.

• PyMF [61] for solving the CNMF algorithm, its implementation is based on [31].

Dim32 [48] and Cover-type [50] datasets are public. The Sensor datasets are
provided by a company and are not publicly available. The algorithm code can be
provided on request.

6 Results and Discussion
6.1 Algorithm configuration
The Pattern-labelling technique introduced in Section 4.5 is benchmarked to CNMF-
labelling1 (see Section 4.4) on Dim32 dataset. As one can observe in Table 3, the
Pattern-labeling has produced better results than the CNMF-labelling. This is logical
and can be predicted due to the randomness embedded into the CNMF algorithm.
The latter algorithm randomly initiates theH matrix and is executedmultiple times to
generate a good approximation. In comparison to it the Pattern-labelling is consistent,
since randomness is not used in its calculations, as this is described in Section 4.5.
Therefore, Pattern-labelling is chosen to be used in our experiments studying the
MST-MVS algorithm performance.

Table 3: The cluster validation measures' scores generated on Dim32 dataset by Pattern-labelling (PL) and
CNMF-labelling (CNMF). MST-MVS algorithm is executed with a threshold Θ = 0.0 and LEdges method. The
dataset is divided into two chunks containing 614 and 410 instances, respectively.

Minimum Maximum Mean
Method ARI H C AMI ARI H C AMI ARI H C AMI

CNMF 0.82 0.91 0.98 0.94 0.84 0.92 0.98 0.94 0.83 0.92 0.98 0.94
PL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Note. H and C stand for Homogenity and Completeness, respectively.

In addition, we have compared the two algorithms for calculating artificial nodes
(see Algorithms V.2 and V.3) on Dim32 dataset. As it can be observed in Table 4
both methods (BNodes and LEdges) have similar performance w.r.t. the used metrics.
Note that BNodes, as stated before, has a small shortcoming, namely it would split
a cluster if the clusters are ordered in a straight line. On the other hand, LEdges is
more efficient by combining stages 5 and 6 of the algorithm. Due to this and the
close similarity between the results generated by the two methods LEdges is selected
to be used in the experiments studying algorithm performance.

1Note that in our experiments we have used a CNMF-based, instead of NMF-based, version of the
CNMF-labelling technique to allow for negative data.

171

Table 4: The cluster validationmeasures' scores generated on Dim32 dataset by LEdges and BNodes. MST-MVS
algorithm is executed with a threshold Θ = 0.0 and CNMF-labelling method. The dataset is divided into two
chunks containing 614 and 410 instances, respectively.

Minimum Maximum Mean
Method ARI H C AMI ARI H C AMI ARI H C AMI

BNodes 0.83 0.91 0.99 0.94 0.84 0.92 0.99 0.95 0.84 0.92 0.99 0.95
LEdges 0.82 0.91 0.98 0.94 0.84 0.92 0.98 0.94 0.83 0.92 0.98 0.94

Note. H and C stand for Homogenity and Completeness, respectively.

6.2 Tuning of algorithm parameters
The only parameter used in the algorithm, threshold Θt, is defined based on data
exploration. This is done by running the MST-MVS algorithm on each used dataset
and plotting the SI values of the views’ clustering models calculated in each data
chunk. For example, in case of Dim32 dataset, the threshold is set to 0.5. It could
theoretically be higher due to the high SI scores produced on the views’ clustering
solutions, this can be observed in Table 5.

Table 5: The average SI scores of the views' clustering models produced in the two chunks of Dim32 dataset
by applying the MST-MVS algorithm configuration using LEdges and CNMF-labelling.

Avg. SI
Chunk View 0 View 1

1 0.91 0.94
2 0.93 0.94

In case of Cover-type data we plot the SI values found for each view in Figure 4. As
one can observe they are relatively low, and most of the time below 0. Therefore,
-0.2 is used as the threshold in the experiments conducted on Cover-type dataset. It
could be argued that a positive threshold should be used, as negative SI denotes a poor
clustering solution. However, most of the clusters of this dataset are overlapping and
this affects the quality of the views’ clustering solutions. For example, only the first
chunk has produced positive SI values for all views. Hence, the threshold -0.2 is set
to be a close average of the three lowest scoring views (views 0, 1, 2).

Table 6: The SI scores of the views' clustering models produced in the two chunks of one-year Sensor dataset
by applying the MST-MVS algorithm configuration using LEdges and Pattern-labelling.

Avg. SI
Chunk View 0 View 1 View 3

1 -1.00 0.39 -1.00
2 -0.10 0.63 -0.11

Similar to Cover-type data, the threshold on the Sensor dataset is set below 0 to
include more than one view in the calculation of the global model. Specifically−0.4,
a close average of the lowest and highest SI values with an added margin for error, as
it can be observed in Table 6. Our motivation for this is the high difference between
the values generated on view 2 and the other two views’ values.

172

0 10 20 30 40 50 60 70 80

−1

−0.5

0

0.5

1

Chunks

SC

View 0
View 1
View 2
View 3

Figure 4: The SI scores of the views' clustering models produced on Cover-Type dataset by applying the MST-
MVS algorithm configuration using LEdges and Pattern-labelling.

In order to determine the chunk size for the Cover-type dataset we have conducted
experiments by studying different chunk sizes. Table 7 presents the produced cluster
validation measures’ scores for three different chunk sizes. As one can see they are
very close. Therefore, we have selected 600 to be the chunk size, since the smallest
size results in experimenting with more chunks. The latter provides more results
for discussion and facilitates to get better insight into the working mechanism of the
algorithm.

Table 7: Average cluster validation measures' scores generated on the Cover-type experimental datasets
using different chunk sizes.

Chunk size ARI H C AMI

600 0.27 0.21 0.46 0.27
1000 0.25 0.20 0.49 0.26
2000 0.28 0.22 0.50 0.29

Note. H and C stand for Homogeneity and Completeness, respectively.

6.3 Evaluation of algorithm performance
Based on the experiments discussed in Sections 6.1 and 6.2 a standard configura-
tion of MST-MVS algorithm has been determined for each dataset. These standard
configurations are used in the experiments discussed in this section. The standard
configurations of the used datasets are shown in Table 8.

Note that in case of Cover-Type, the SI analysis for some chunks fails for all
views, resulting in a skipped chunk. When plotting the results, the skipped chunk is
not shown. The results from the last processed chunk are used instead. This can be
observed in certain places in the graphs depicting the metrics’ scores, e.g., see last

173

Table 8: MST-MVS algorithm standard configurations for the used datasets.

Dataset Global model method Labeling Method Threshold Chunk size(s)

Dim32 LEdges Pattern-labelling 0.5 614(410)
Cover-Type LEdges Pattern-labelling - 0.2 600

One-year Sensor LEdges Pattern-labelling -0.4 243(118)
Two-year Sensor LEdges Pattern-labelling -0.4 363(334)

chunks in Figure 5, where the ARI scores plotted for MST-MVS algorithm (solid
black line) between chunk 70 and 82 are constants, due to skipped chunks.

6.3.1 Cover-Type dataset
The performance of the MST-MVS algorithm’s standard configuration is evaluated
on the Cover-Type dataset. The obtained results are reported in Table 9. It can be
observed that the transfer of knowledge does have a positive impact on the result-
ing clustering solution’s properties evaluated by the four external cluster validation
measures. Note that the maximal values generated by the two versions of the algo-
rithm are very similar. However, the version implementing the knowledge transfer
generates higher minimal and average values then the other version.

Table 9: The cluster validation measures' scores generated on Cover-type dataset by the MST-MVS algorithm
standard configuration with and without knowledge transfer between two consecutive data chunks.

Minimum Maximum Average
Transfer ARI H C AMI ARI H C AMI ARI H C AMI

Yes 0.10 0.12 0.11 0.12 0.50 0.48 0.87 0.61 0.28 0.23 0.50 0.29
No -0.02 0.00 0.03 0.00 0.50 0.46 0.91 0.61 0.17 0.14 0.45 0.19

Note. H and C stand for Homogenity and Completeness, respectively.

It should also be noted that the evaluation of the views’ clustering solutions does
have a positive impact on the global models’ clustering solutions, as supported by the
results presented in Table 10. The difference between the obtained results, with and
without evaluations of local clustering solutions is not significant, but in all conducted
experiments except one (the minimum value of Completeness) the scores generated
in the former scenario, i.e. when the local clustering solutions are evaluated, are
higher.

Table 10: The cluster validation measures' scores generated on Cover-type dataset by the MST-MVS algorithm
standard configuration with and without evaluation of the views clustering solutions (Stage 2).

Minimum Maximum Average
Evaluation ARI H C AMI ARI H C AMI ARI H C AMI

Yes 0.10 0.12 0.11 0.12 0.50 0.48 0.87 0.61 0.28 0.23 0.50 0.29
No -0.00 0.00 0.19 -0.00 0.38 0.37 0.81 0.48 0.24 0.19 0.48 0.25

Note. H and C stand for Homogenity and Completeness, respectively.

In order to get further insight into the results reported in Table 9, we have depicted
the calculated ARI scores in Figure 5. This plot indicates that the instability in the

174

results is around and after the 58th chunk, i.e., something is different in the data after
that chunk. Therefore, to better understand the data structure the number of clusters
of the clustering solutions produced by the two versions are further benchmarked to
that of the ground-truth clustering of the Cover-type dataset in Figure 6.

0 10 20 30 40 50 60 70 80

0

0.1

0.2

0.3

0.4

0.5

Chunks

A
RI

Normal
No seeding

Figure 5: ARI scores generated on Cover-type dataset by the MST-MVS algorithm standard configuration with
and without knowledge transfer between two consecutive data chunks.

As one can observe in Figure 6 the number of clusters fluctuates after the 58th

chunk, resulting in the instability in the algorithm’s results after it. If the results after
the 58th chunk are excluded, then as can be seen in Figure 5, the knowledge transfer
between chunks do have a positive impact on the results. This in turn indicates that
the artificial nodes from the previous chunk really guide the clustering of the next
chunk.This is additionally demonstrated in Figure 6, where the two versions show
different behaviour signatures w.r.t. the number of clusters. Despite the fact that the
number of clusters produced by the version without implementing knowledge trans-
fer is closer to the ground-truth number of clusters, its behaviour is more fluctuating
in comparison to that of the other version.

6.3.2 Sensor datasets
Initially, the MST-MVS clustering algorithm has been applied on the one-year Sen-
sor dataset by simulating the same experimental scenario as the one used in [1] to
evaluate MV Multi-Instance Clustering. Namely, as described in Section 5.3, the
created daily profiles (361 in total) are split into two parts in order to simulate two
data chunks: the first one with 243 daily profiles (January - August) and the second
chunk with 118 daily profiles (September - December).

Tables 11 and 12 present the clustering solutions generated by the MST-MVS
algorithm on the first and second data chunks of the one-year Sensor dataset, re-
spectively. These are benchmarked to 13 cluster concepts identified by MV Multi-

175

0 20 40 60 80

2

3

4

5

6

7

Chunks

#C
lu
ste
rs

Normal
No seeding
Ground-truth

Figure 6: Comparison of the number of clusters produced on Cover-type dataset by the MST-MVS algorithm
standard configuration with and without knowledge transfer between two consecutive data chunks with the
ground-true number of clusters.

Instance Clustering algorithm in [1]. The latter algorithm has extracted 8 concepts
that links three views from the first chunk and 5 additional concepts from the second
chunk. The last column Concept, in both Table 11 and Table 12 present the concepts
reported in [1] that based on our analysis match the clusters identified by applying
the MST-MVS clustering algorithm.

Table 11: Summary of the identified clusters in the first chunk (January - August) of the one-year Sensor dataset.

Cluster PHL SST SRT VOM VOS SE OTM OTS Months Size Concept

0 15.15 36.33 31.95 9.83 ±0.65 81 10.71 ±0.43 1 - 8 240 Unite concepts that
share common
trends for both heat-
ing and non-heating
season

1 36.92 52.13 39.99 19.32 ±3.18 96 -2.89 ±0.36 1, 3 2 Concepts 12 & 13
2 11.42 34.33 31.43 11.77 ±7.28 84 11.29 ±0.44 5 1 Deviant behaviour

Total 243

Note. The unit for PHL is kW and for SST, SRT, OTM, and OTS is ◦C. VOM,
VOS, and SE are expressed in %. For the full form of each feature see Table 2.

It can be observed that two concepts (concepts 12 and 13) extracted byMVMulti-
Instance Clustering are very similar to cluster 1 in the first data chunk (see Table 11).
Concepts 12 and 13 present the system behaviour typical for the heating season when
the average outdoor temperature is close to zero. Cluster 1 differs from these con-
cepts on having a negative mean value for the outdoor temperature (OTM), i.e. it
groups together the profiles of the only two days in January and March when the
temperature was below zero. Cluster 0 unites many of the concepts produced by the
MV Multi-Instance Clustering in [1]. Evidently, it represents trends common for
both heating and non-heating season. This result is mainly due to missing of previ-

176

ous knowledge. This is also confirmed by the improved results obtained when the
algorithm is executed iteratively (see Figure 7, and Tables 13 and 14). Cluster 2 is
a singleton and can be considered as a pattern hinting deviating behaviour (from the
one presented by cluster 0). It indicates a large deviation in the opening and closing of
the valve in May. Therefore, it is worth to be further analysed and discussed with do-
main experts. In general, as it will be seen further in this section, clustering solutions
produced by the proposed algorithm are more compact than the ones generated by
MV Multi-Instance Clustering. This is due to the different working mechanisms of
the two algorithms. Namely, the MV Multi-Instance Clustering algorithm integrates
the clustering solutions that have been produced independently on two consecutive
data chunks. Then it applies FCA analysis, and closed patterns to extract the inte-
grated clustering result. This certainly implies the generation of clustering solutions
that have more smaller-size clusters. In comparison with MVMulti-Instance Cluster-
ing, the proposed algorithm clusters each data chunk separately by applying a MST
clustering algorithm seeded with artificial nodes from the previous chunk.
Table 12: Summary of the identified clusters in the second chunk (September - December) of the one-year
Sensor dataset.

Cluster PHL SST SRT VOM VOS SE OTM OTS Months Size Concept

0 14.27 36.86 33.44 10.62 ±0.59 87 9.79 ±0.30 9 - 12 65 Concept 6
-1 20.90 42.61 37.12 13.32 ±0.56 92 5.01 ±0.40 9 - 12 26 Concepts 10 &

11
2 20.51 43.48 38.26 13.25 ±0.45 94 5.00 ±0.35 10 - 12 23 Concepts 10 &

11
1 25.49 42.76 36.35 14.36 ±0.53 95 5.56 ±0.46 10 3 Concept 10
3 23.22 44.87 38.76 13.32 ±1.80 96 3.90 ±0.32 12 1 Concept 11

Total 118

Note. The unit for PHL is kW and for SST, SRT, OTM, and OTS is ◦C. VOM, VOS,
and SE are expressed in %. For the full form of each feature see Table 2.

As one can see in Table 12, all clusters are linked to concepts identified by MV
Multi-Instance Clustering in the second chunk of one-year Sensor dataset. We can
notice the same trend as the one discussed above. Namely, more compact solution
than the one produced by MV Multi-Instance Clustering. The five clusters (0, -1, 1,
2 and 3) identified by the MST-MVS algorithm are linked only to three concepts. It
should be noted that cluster -1 indicates “outliers”, i.e. data points that do not match
any of the patterns extracted by theMST-MVS algorithm from the second data chunk.
In comparisonwith clusters 1 and 2, cluster -1 seems to be a combination of them both.
This could therefore, be the reason why these data points are labelled as “outliers” by
the algorithm. In addition, clusters 1 and 3 contain data points presenting behaviour
deviating from the one modeled by cluster 2. This phenomenon is also noticed in the
clustering solution summarized in Table 11 (see cluster 2) and clustering solutions
generated on two-year Sensor data chunks (see Tables 15 and 16).

In order to study how the algorithm performance is affected by the quality of
transfer knowledge we have applied theMST-MVS algorithm on the one-year Sensor
dataset in a circular mode. This means that after the second chunk the algorithm is run

177

on the first chunk again, but now it is seen as the next data chunk. This is repeated 10
times to observe the changes in SI score over time, see Figure 7. It can be observed in
the figure that the SI values stabilize after chunk 10 (i.e. after the 5th iteration), which
results in an average SI value of 0.25 for all views’ clustering solutions. In addition
to this, we notice a significant increase in SI score in comparison to the starting value.
All these indicate that the quality of the clustering solution of the initial chunk has an
impact on the successive chunks’ results, i.e. the quality of knowledge transferred is
important.

0 2 4 6 8 10 12 14 16 18

−1

−0.5

0

0.5

Chunks

SC

View 0
View 1
View 2

Figure 7: The SI scores of local clustering models generated by the MST-MVS algorithm standard configuration
applied 10 times on the one-year Sensor dataset in a circular mode. The threshold value is set to -0.4.

Table 13: Summary of the identified clusters in the first chunk (10th iterative chunk) after 5th iteration of the
algorithm on the one-year Sensor dataset.

Cluster PHL SST SRT VOM VOS SE OTM OTS Months Size

0 39.75 47.37 38.17 17.57 ±0.53 96 1.20 ±0.35 1 - 3, 5 73
3 19.81 50.32 39.17 18.59 ±4.18 98 -1.55 ±0.41 3 1
-1 6.59 37.38 32.89 12.43 ±0.73 89 9.34 ±0.44 3 - 7 66
1 3.40 27.89 26.96 2.65 ±0.72 67 18.31 ±0.49 3 - 8 101
4 11.42 34.34 31.44 11.77 ±7.28 85 11.30 ±0.44 3 1
2 10.40 32.73 30.08 11.18 ±1.09 81 13.00 ±0.47 3 1

Total 243

Note. The unit for PHL is kW and for SST, SRT, OTM, and OTS is ◦C. VOM, VOS,
and SE are expressed in %. For the full form of each feature see Table 2.

We further study the clustering solutions produced on the first and second chunk
after the 5th iteration of our algorithm on one-year Sensor dataset. They are pre-
sented in Tables 13 and 14, respectively. In comparison with the results reported in
Tables 11 and 12 these clustering solutions obtained better capture the valve system
behaviour. We can observe that the two clustering solutions have a very similar struc-
ture. Namely, they both have two bigger clusters (clusters 0 and 1 in Table 13 and

178

Table 14: Summary of the identified clusters in the second chunk (11th iterative chunk) after 5th iteration of
the algorithm on the one-year Sensor dataset.

Cluster PHL SST SRT VOM VOS SE OTM OTS Months Size

0 5.47 28.38 27.24 5.22 ±0.98 74 16.17 ±0.36 9 17
-1 11.28 34.37 31.41 11.54 ±0.65 85 11.76 ±0.36 9 - 10 10
1 12.45 34.94 32.08 11.81 ±0.47 88 11.10 ±0.32 9 - 10 10
2 21.11 43.21 37.88 13.29 ±0.47 95 4.94 ±0.33 9 - 12 80
3 23.23 44.88 38.76 13.33 ±1.80 97 3.90 ±0.32 12 1

Total 118

Note. The unit for PHL is kW and for SST, SRT, OTM, and OTS is ◦C. VOM, VOS,
and SE are expressed in %. For the full form of each feature see Table 2.

clusters 2 and 0 in Table 14) that model the system behaviour typical for heating and
non-heating seasons, respectively; a single cluster (cluster -1 in both clustering so-
lutions) that presents behaviour fluctuating between heating and non-heating modes,
i.e. the data points assigned to this cluster do not match any of the extracted patterns;
and finally, a few smaller clusters that demonstrate behaviour deviating from the two
typical modes. For example, clusters 3 and 4 in Table 13 are singletons that present
two days in March with a large deviation in the valve openness (VOS) in heating
and non-heating season, respectively. Interestingly, the only day of cluster 2 is not
assigned to cluster 4, mainly due to the fact that its VOS behaviour is normal. Evi-
dently, the generated clustering models provide a lot of useful information that can
facilitate the domain experts in analyzing of the system behaviour.

Table 15: Summary of the identified clusters in the first chunk (first year) of the two-year Sensor dataset.

Cluster PHL SST SRT VOM VOS SE OTM OTS Months Size

0 17.41 38.73 33.87 11.66 ±0.71 87 8.36 ±0.39 1 - 12 328
1 11.42 34.34 31.44 11.77 ±7.28 85 11.30 ±0.44 5 1
2 2.43 26.27 26.07 0.00 ±0.00 58 21.50 ±0.47 6 - 9 34

Total 363

Note. The unit for PHL is kW and for SST, SRT, OTM, and OTS is ◦C. VOM, VOS,
and SE are expressed in %. For the full form of each feature see Table 2.

Table 16: Summary of the identified clusters in the second chunk (second year) of the two-year Sensor dataset.

Cluster PHL SST SRT VOM VOS SE OTM OTS Months Size

1 11.67 38.63 33.80 12.46 ±0.57 -28 6.89 ±0.33 1 - 12 207
0 10.01 38.28 33.25 12.57 ±0.51 -31 7.23 ±0.42 2, 11 2
2 3.31 26.77 25.58 2.86 ±0.44 13 18.20 ±0.45 5 - 11 123
3 4.32 26.14 25.94 1.63 ±1.02 76 16.77 ±0.52 6 1

Total 334

Note. The unit for PHL is kW and for SST, SRT, OTM, and OTS is ◦C. VOM, VOS,
and SE are expressed in %. For the full form of each feature see Table 2.

Tables 15 and 16 show the clustering solutions generated by the MST-MVS algo-
rithm on the two chunks of the two-year Sensor dataset, respectively. We can see that

179

there is a similarity between the two clustering solutions. In addition, the clustering
produced on the first chunk (see Table 15) is similar to the one-year Sensor dataset’s
clustering results (see Tables 11 and 12). Namely, clusters 0 in the one-year Sensor
dataset from both chunks have been combined to produce cluster 0 in the two-year
dataset. Furthermore, cluster 1 from the two-year dataset is exactly the same as the
deviant behaviour cluster from the one-year dataset (cluster 2 in Table 11). An inter-
esting behaviour is presented by cluster 2 generated on the first chunk of the two-year
Sensor dataset (see Table 15). We can see that all data points with VOM and VOS
of 0.00 in a context of average outdoor temperature (OTM) above 20◦C have been
grouped together.

In Table 16, containing the clustering solution produced on the second chunk
of two-year Sensor dataset, we can observe some interesting cluster patterns. First,
clusters 0 and 1 in Table 16 have both negative values for the substation efficiency
(SE). During a span in the second data chunk, that is from 23rd September 2020
till 14th December 2020 the system had faulty behaviour. The negative values for
SE in these clusters are due to this. The primary supply temperature during these
days is less than the primary return temperature which gave large negative SE values.
Second, cluster 2 from the first chunk (see Table 15) seems to have been split into
clusters 2 and 3 in the second chunk (see Table 16). Finally, clusters 0 and 1 contain
the heating season patterns while clusters 2 and 3 present the two modes during the
non-heating period. We can notice the clustering has the same structure as that of
the clustering solutions presented in Tables 13 and 14. Namely, clusters 0 and 3
contain just two and one data points, respectively. These can be interpreted as ones
presenting behaviours deviating from the typical for heating and non-heating season,
respectively.

7 Conclusion and Future Work
In this work, we have proposed a novel multi-view graph-based clustering algorithm,
entitledMST-MVS clustering, suitable formodellingmulti-view streaming scenarios.
We have developed different configurations of the MST-MVS clustering algorithm.
They have been evaluated under different experimental scenarios on two types of data
sets: synthetic and real-world. We have studied two different approaches for identify-
ing artificial nodes that are used to seed theMST algorithm producing local clustering
models at the upcoming data chunk. We have also investigated how the knowledge
transfer affects the performance of the proposed MST-MVS algorithm. Finally, we
have proposed two post-labelling techniques: Pattern-labelling and CNMF-labelling.

The MST-MVS clustering algorithm logically has shown a higher performance
on the synthetic data than on the real-world data. This is due to the fact that syn-
thetic data usually does not have the features which are characteristic for real-world
data such as noise, missing values and overlapping clusters. The transfer of knowl-

180

edge feature has shown to have a positive effect on the performance of MST-MVS
algorithm. The Pattern-labelling technique has been demonstrated to outperform the
CNMF-labelling algorithm in the conducted experiments both in terms of computa-
tional time and labelling accuracy. Our future plans include further evaluation of the
proposed MST-MVS clustering algorithm on richer real-world datasets in different
applied scenarios.

Acknowledgements
We would like to thank Farhad Basiri for providing us the data from the smart build-
ing domain.

References
[1] V. M. Devagiri, V. Boeva, and S. Abghari. “A Multi-view Clustering Ap-

proach for Analysis of Streaming Data”. In: Artificial Intelligence Applica-
tions and Innovations. Ed. by I. Maglogiannis, J. Macintyre, and L. Iliadis.
Cham: Springer International Publishing, 2021, pp. 169–183. ISBN: 978-3-030-
79150-6.

[2] V. M. Devagiri, V. Boeva, and E. Tsiporkova. “Split-Merge Evolutionary Clus-
tering for Multi-View Streaming Data”. In: Procedia Computer Science 176
(2020), pp. 460–469.

[3] L. Huang, C. .-. Wang, H. .-. Chao, and P. S. Yu. “MVStream: Multiview Data
Stream Clustering”. In: IEEE Transactions on Neural Networks and Learning
Systems 31.9 (2020), pp. 3482–3496.

[4] C. Lindig. “Fast concept analysis”. In: Working with Conceptual Structures-
Contributions to ICCS (2000), pp. 152–161.

[5] M. Bendechache andM.-T. Kechadi. “Distributed clustering algorithm for spa-
tial datamining”. In: 2015 2nd IEEE International Conference on Spatial Data
Mining and Geographical Knowledge Services (ICSDM). IEEE. 2015, pp. 60–
65.

[6] J. Liu, C. Wang, J. Gao, and J. Han. “Multi-view clustering via joint non-
negative matrix factorization”. In: Proceedings of the 2013 SIAM Interna-
tional Conference on Data Mining. SIAM. 2013, pp. 252–260.

[7] X. Peng, Z. Huang, J. Lv, H. Zhu, and J. T. Zhou. “COMIC: Multi-view clus-
tering without parameter selection”. In: International Conference on Machine
Learning. PMLR. 2019, pp. 5092–5101.

181

[8] Y. Yang and H.Wang. “Multi-view clustering: A survey”. In: Big Data Mining
and Analytics 1.2 (2018), pp. 83–107.

[9] Z. Akata, C. Thurau, and C. Bauckhage. “Non-negative matrix factorization in
multimodality data for segmentation and label prediction”. In: 16th Computer
vision winter workshop. 2011.

[10] W. Ou, F. Long, Y. Tan, S. Yu, and P. Wang. “Co-regularized multiview non-
negativematrix factorizationwith correlation constraint for representation learn-
ing”. In: Multimedia Tools and Applications 77.10 (2018), pp. 12955–12978.

[11] J. Wang, F. Tian, H. Yu, C. H. Liu, K. Zhan, and X. Wang. “Diverse non-
negative matrix factorization for multi-view data representation”. In: IEEE
transactions on cybernetics 48.9 (2017), pp. 2620–2632.

[12] P. Jing, Y. Su, Z. Li, and L. Nie. “Learning robust affinity graph representation
for multi-view clustering”. In: Information Sciences 544 (2021), pp. 155–167.
ISSN: 0020-0255. DOI: https://doi.org/10.1016/j.ins.2020.06.068.
URL: https : / / www . sciencedirect . com / science / article / pii /
S0020025520306575.

[13] Q. Zheng, J. Zhu, Y. Ma, Z. Li, and Z. Tian. “Multi-view subspace clustering
networks with local and global graph information”. In: Neurocomputing 449
(2021), pp. 15–23. ISSN: 0925-2312. DOI: https://doi.org/10.1016/
j.neucom.2021.03.115. URL: https://www.sciencedirect.com/
science/article/pii/S0925231221005075.

[14] M. Ghesmoune, M. Lebbah, and H. Azzag. “State-of-the-art on clustering data
streams”. In: Big Data Analytics 1.1 (2016), pp. 1–27.

[15] R. M. Ackermann, M. Märtens, C. Raupach, K. Swierkot, C. Lammersen, and
C. Sohler. “StreamKM++: A clustering algorithm for data streams”. In: ACM
Journal of Experimental Algorithmics 17.1 (2012), pp. 173–187.

[16] C. Aggarwal, J. Han, J.Wang, and P. Yu. “A framework for clustering evolving
data streams”. In: VLDB. Berlin: VLDB Endowment. Vol. 7. 2003, pp. 81–92.

[17] B. Cao, D. Shen, J.-T. Sun, X. Wang, Q. Yang, and Z. Chen. “Detect and
Track Latent Factors with Online Nonnegative Matrix Factorization.” In: IJ-
CAI. Vol. 7. 2007, pp. 2689–2694.

[18] P. Kranen, I. Assent, C. Baldauf, and et al. “The ClusTree: indexing micro-
clusters for anytime stream mining”. In: Knowledge Information Systems 29
(2011), pp. 249–272.

[19] C. Ding, X. He, and H. D. Simon. “On the equivalence of nonnegative ma-
trix factorization and spectral clustering”. In: Proceedings of the 2005 SIAM
international conference on data mining. SIAM. 2005, pp. 606–610.

182

https://doi.org/https://doi.org/10.1016/j.ins.2020.06.068
https://www.sciencedirect.com/science/article/pii/S0020025520306575
https://www.sciencedirect.com/science/article/pii/S0020025520306575
https://doi.org/https://doi.org/10.1016/j.neucom.2021.03.115
https://doi.org/https://doi.org/10.1016/j.neucom.2021.03.115
https://www.sciencedirect.com/science/article/pii/S0925231221005075
https://www.sciencedirect.com/science/article/pii/S0925231221005075

[20] C.-D. Wang, J.-H. Lai, D. Huang, and W.-S. Zheng. “SVStream: A support
vector-based algorithm for clustering data streams”. In: IEEE Transactions on
Knowledge and Data Engineering 25.6 (2011), pp. 1410–1424.

[21] W. Shao, L. He, C. Lu, and P. S. Yu. “Online multi-view clustering with in-
complete views”. In: 2016 IEEE International Conference on Big Data (Big
Data). 2016, pp. 1012–1017.

[22] D. D. Lee and H. S. Seung. “Learning the parts of objects by non-negative
matrix factorization”. In: Nature 401.6755 (1999), pp. 788–791.

[23] A. Ben-Hur, D. Horn, H. T. Siegelmann, and V. Vapnik. “Support vector clus-
tering”. In: Journal of machine learning research 2.Dec (2001), pp. 125–137.

[24] C.-D. Wang and J. Lai. “Position regularized support vector domain descrip-
tion”. In: Pattern Recognition 46.3 (2013), pp. 875–884.

[25] V. Boeva, M. Angelova, V. M. Devagiri, and E. Tsiporkova. “Bipartite Split-
Merge Evolutionary Clustering”. In: Agents and Artificial Intelligence. Ed. by
J. van den Herik, A. P. Rocha, and L. Steels. Cham: Springer International
Publishing, 2019, pp. 204–223.

[26] G. W. Flake, R. E. Tarjan, and K. Tsioutsiouliklis. “Graph clustering and min-
imum cut trees”. In: Internet Mathematics 1.4 (2004), pp. 385–408.

[27] R. Görke, T. Hartmann, and D. Wagner. “Dynamic Graph Clustering Using
Minimum-Cut Trees”. In: Algorithms and Data Structures. Ed. by F. Dehne,
M. Gavrilova, J.-R. Sack, and C. D. Tóth. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 339–350.

[28] B. Saha and P. Mitra. “Dynamic Algorithm for Graph Clustering Using Min-
imum Cut Tree”. In: Sixth IEEE International Conference on Data Mining -
Workshops (ICDMW’06). 2006, pp. 667–671.

[29] X. Lv, Y. Ma, X. He, H. Huang, and J. Yang. “CciMST: A clustering algo-
rithm based on minimum spanning tree and cluster centers”. In:Mathematical
Problems in Engineering (2018).

[30] J. B. Kruskal. “On the shortest spanning subtree of a graph and the traveling
salesman problem”. In:Proceedings of the AmericanMathematical society 7.1
(1956), pp. 48–50.

[31] C. H. Ding, T. Li, and M. I. Jordan. “Convex and semi-nonnegative matrix
factorizations”. In: IEEE transactions on pattern analysis and machine intel-
ligence 32.1 (2008), pp. 45–55.

[32] R. Hamon, V. Emiya, and C. Févotte. “Convex nonnegative matrix factor-
ization with missing data”. In: 2016 IEEE 26th International Workshop on
Machine Learning for Signal Processing (MLSP). IEEE. 2016, pp. 1–6.

183

[33] P. Paatero and U. Tapper. “Positive matrix factorization: A non-negative factor
model with optimal utilization of error estimates of data values”. In: Environ-
metrics 5.2 (1994), pp. 111–126.

[34] S. Craw. “Manhattan Distance”. In: Encyclopedia of Machine Learning and
Data Mining. Ed. by C. Sammut and G. I. Webb. Boston, MA: Springer US,
2017, pp. 790–791.

[35] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. “On clustering validation tech-
niques”. In: J Intell Inf Syst 17.2-3 (2001), pp. 107–145.

[36] L. Vendramin, R. Campello, and E. Hruschka. “Relative clustering validity
criteria: A comparative overview”. In: Statistical Analysis and Data Mining 3
(2010), pp. 209–235.

[37] A. K. Jain and R. C. Dubes. Algorithms for clustering data. English. Engle-
wood Cliffs, NJ: Prentice Hall, 1988, pp. xiv + 320. ISBN: 0-13-022278-X.

[38] J. Handl, J. Knowles, and D. Kell. “Computational cluster validation in post-
genomic data analysis”. In: Bioinformatics 21.15 (2005), pp. 3201–3212.

[39] H. Van der Hoef and M. J. Warrens. “Understanding information theoretic
measures for comparing clusterings”. In: Behaviormetrika 46 (2019), pp. 353–
370.

[40] G. Schwarz. “Estimating the Dimension of a Model”. In: The Annals of Statis-
tics 6.2 (1978), pp. 461–464.

[41] W. M. Rand. “Objective Criteria for the Evaluation of Clustering Methods”.
In: Journal of the American Statistical Association 66.336 (1971), pp. 846–
850. ISSN: 01621459.

[42] T. J. Cover TM. Elements of information theory. Schilling D (ed) Wiley series
in telecommunications. Wiley, New York, 1991, pp. 12–49.

[43] N. X. Vinh, J. Epps, and J. Bailey. “Information Theoretic Measures for Clus-
terings Comparison: Is a Correction for Chance Necessary?” In: Proceedings
of the 26th Annual International Conference on Machine Learning. ICML’09.
Montreal, Quebec, Canada, 2009, pp. 1073–1080.

[44] P. Rousseeuw. “Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis”. In: Journal of computational and applied mathematics 20
(1987), pp. 53–65.

[45] L. Hubert and P. Arabie. “Comparing partitions”. In: Journal of Classification
2.1 (Dec. 1985), pp. 193–218.

[46] A. Rosenberg and J. Hirschberg. “V-measure: A conditional entropy-based
external cluster evaluation measure”. In: Proceedings of the 2007 joint confer-
ence on empirical methods in natural language processing and computational
natural language learning (EMNLP-CoNLL). 2007, pp. 410–420.

184

[47] A. Zubaroglu and V. Atalay. “Data stream clustering: a review”. In: Artificial
Intelligence Review 54.2 (2021), pp. 1201–1236. DOI: 10 . 1007 / s10462 -
020-09874-x.

[48] P. Fränti and S. Sieranoja. K-means properties on six clustering benchmark
datasets. 2018. URL: http://cs.uef.fi/sipu/datasets/.

[49] P. Fränti, O. Virmajoki, and V. Hautamäki. “Fast agglomerative clustering us-
ing a k-nearest neighbor graph”. In: IEEE Trans. on Pattern Analysis and Ma-
chine Intelligence 28.11 (2006), pp. 1875–1881.

[50] J. A. Blackard, D. J. Dean, and C.W.Anderson.UCIMachine Learning Repos-
itory. 1998. URL: http://archive.ics.uci.edu/ml.

[51] S. Hettich and S. Bay. The UCI KDD Archive. University of California, De-
partment of Information and Computer Science, Irvine, CA. 1999.

[52] E. Lughofer. “A dynamic split-and-merge approach for evolving cluster mod-
els”. In: Evolving Systems 3.3 (Sept. 2012), pp. 135–151.

[53] A. Eghbalian and et al. “Multi-view Data Mining Approach for Behaviour
Analysis of Smart Control Valve”. In:Proc. of 19th IEEE ICMLA. 2020, pp. 1238–
1245.

[54] F. R. Hampel. “A General Qualitative Definition of Robustness”. In: The An-
nals of Mathematical Statistics 42.6 (1971), pp. 1887–1896. ISSN: 00034851.
URL: http://www.jstor.org/stable/2240114.

[55] G. Van Rossum and F. L. Drake. Python 3 Reference Manual. Scotts Valley,
CA: CreateSpace, 2009.

[56] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau,M. Brucher,M. Perrot, and E. Duchesnay. “Scikit-learn:Machine
Learning in Python”. In: Journal of Machine Learning Research 12 (2011),
pp. 2825–2830.

[57] A. Hagberg, P. Swart, and D. S Chult. Exploring network structure, dynamics,
and function using NetworkX. Tech. rep. Los Alamos National Lab.(LANL),
Los Alamos, NM (United States), 2008.

[58] W. McKinney. “Data Structures for Statistical Computing in Python”. In: Pro-
ceedings of the 9th Python in Science Conference. Ed. by S. van der Walt and
J. Millman. 2010, pp. 56–61.

185

https://doi.org/10.1007/s10462-020-09874-x
https://doi.org/10.1007/s10462-020-09874-x
http://cs.uef.fi/sipu/datasets/
http://archive.ics.uci.edu/ml
http://www.jstor.org/stable/2240114

[59] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D.
Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S.
Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. Fernández del Río, M.
Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy,W.Weckesser,
H. Abbasi, C. Gohlke, and T. E. Oliphant. “Array programming with NumPy”.
In: Nature 585 (2020), pp. 357–362.

[60] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cour-
napeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt,
M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R.
Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D.
Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris,
A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0
Contributors. “SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python”. In: Nature Methods 17 (2020), pp. 261–272.

[61] J. Erler, M. E. Ramos-Ceja, K. Basu, and F. Bertoldi. “Introducing constrained
matched filters for improved separation of point sources from galaxy clusters”.
In: ArXiv e-prints (2018). eprint: 1809.06446.

186

1809.06446

Paper VI
Domain Adaptation Through Cluster
Integration and Correlation

Vishnu Manasa Devagiri, Veselka Boeva, Shahrooz Abghari
In: 2022 IEEE International Conference on Data Mining Workshops
(ICDMW). 2022, pp. 1–8, DOI: 10.1109/ICDMW58026.2022.00025

Abstract

Domain shift is a common problem in many real-world applications
using machine learning models. Most of the existing solutions are based
on supervised and deep-learning models. This paper proposes a novel
clustering algorithm capable of producing an adapted and/or integrated
clustering model for the considered domains. Source and target domains
are represented by clustering models such that each cluster of a domain
models a specific scenario of the studied phenomenon by defining a
range of allowable values for each attribute in a given data vector. The
proposed domain integration algorithm works in two steps: (i) cross-
labeling and (ii) integration. Initially, each clustering model is crossly
applied to label the cluster representatives of the other model. These
labels are used to determine the correlations between the two models
to identify the common clusters for both domains, which must be inte-
grated within the second step. Different features of the proposed algo-
rithm are studied and evaluated on a publicly available human activity
recognition (HAR) data set and real-world data from a smart logistics
use case provided by an industrial partner. The experiment’s goal on the
HAR data set is to showcase the algorithm’s potential in automatic data
labeling. While the conducted experiments on the smart logistics use
case evaluate and compare the performance of the integrated and two
adapted models in different domains.
Keywords: domain adaptation, clustering techniques, data integration

1 Introduction
Machine learning (ML) models, such as clustering models used in many real-time
applications, may experience a drop in performance over time or in a new environ-

187

mental context. One of the reasons is the change in data characteristics of the en-
vironment in which the model is used compared to the one it is trained on [1]. A
natural solution to this problem could be to rebuild the clustering solution, but this
is not ideal due to the challenges that come along with it, like the number of compu-
tational resources required to rebuild the model from scratch and the lack of proper
data. This creates the need to use already available knowledge to build a newly up-
dated clustering solution that works in the new environment (domain). This model
adaptation to new domains is known as domain adaptation, a sub-branch of transfer
learning. The domain on which the model is initially trained is the source domain,
and the one to which it is adapted to is the target domain [2]. In the context of domain
adaptation, the source and target domains address the same problem and are related
but can have different data distributions [3]. Some examples include autonomous ve-
hicles, tracking of goods, personalized healthcare, and customer recommendations
like spam detection. In the cases of autonomous vehicles and monitoring of goods,
different environments (locations) can be considered as the domains, whereas in the
case of personalized recommender systems like healthcare, users with distinct behav-
iors are considered as different domains.

Most of the works in the field of domain adaptation propose deep learning-based
techniques in computer vision and image analysis, some of which are described in [4,
5]. The current study instead proposes a clustering-based domain adaptation ap-
proach. Compared to deep learning algorithms, clustering algorithms require fewer
computational resources and are transparent and understandable. We explore the
area of domain adaptation by proposing a domain integration bi-correlation cluster-
ing algorithm (DIBCA). The proposed algorithm integrates the clustering models
describing the source and target domains to obtain an integrated clustering model
that can be used in both domains. In addition, the integrated model is composable
and can be split into two adapted models, one per domain. The latter two models
are smaller than the integrated model and are also expected to better reflect their
domains’ specificity. In general, DIBCA is designed considering the edge devices’
computational and memory constraints, making it suitable for use in situations with
fewer computational or memory resources. DIBCA can be segregated into twomajor
steps, cross-labeling and integration. In the cross-labeling phase, cluster representa-
tives of each of the source and target domains are labeled using the other clustering
model, which is used to find the correlations between clusters of different domains.
This is followed by the integration phase, where the correlated clusters are merged,
and the rest are retained.

The proposed algorithm properties have been studied and evaluated in two dif-
ferent use cases: real-world data from smart logistics and publicly available Human
Activity Recognition (HAR) data. The conducted experiments in the real-world data
context have confirmed our expectation that the performance of the integrated and
two adapted models produced by the algorithm is comparable to that of the two ini-
tially built (source and target) models. In addition, experimental results on the HAR

188

data have shown that DIBCA has the potential to be used for automatic data labeling
tasks.

2 Related Work
Pan et al. [1] and Zhuang et al. [2] present comprehensive surveys of transfer learn-
ing. Pan et al. [1] review transfer learning approaches in the fields of clustering,
classification, and regression, whereas the second study [2] focuses more on homo-
geneous transfer learning, i.e., where the source and target have the same feature
space. Adversarial clustering is used in many unsupervised domain adaptation algo-
rithms like [6, 7] to reduce the domain shift between the source and target domains.
Deng et al. [8] propose a new cluster alignment technique with a teacher for unsuper-
vised domain adaptation. The algorithm uses discriminative clustering loss to align
similar classes across domains.

In [9], the authors propose domain consensus clustering. The algorithm can trans-
fer knowledge from the source to the target domain when the labeled space is not the
same. Common clusters from both domains, as well as private clusters which are spe-
cific to one of the domains, are identified. Class-aware alignment technique is used
on the common clusters to minimise distribution shift between different domains.
Li et al. [7] propose a semi-supervised domain adaptive clustering algorithm enti-
tled Cross-Domain Adaptive Clustering. Adversarial clustering loss is introduced to
group features of unlabelled data, followed by cluster-wise feature alignment in both
domains. The proposed algorithm takes advantage of pseudo labeling to increase
labeled instances in the target domain.

A survey published in [4] presents an overview of unsupervised domain adap-
tation algorithms suitable for classification problems. The algorithms are grouped
into the following five different categories based on the adopted technology, namely,
discrepancy, adversarial, reconstruction, representation, and attention, based meth-
ods. Lu et al. [10] focus on domain adaptation in the field of HAR. The authors
have proposed an algorithm using which knowledge obtained from one HAR data
set could be transferred and used in another similar target data set. Xu et al. [11] use
domain adaptation with meta-learning for cross-domain recommendations. The pro-
posed algorithm helps to avoid cold-start in recommender systems. Gunasekara et
al. [12] propose a novel method to deal with constant changes in data characteristics
and catastrophic forgetting. They create a pool of learners entitled Online Domain
Incremental Pool, containing different learners from which a trained task predictor
selects the appropriate one.

Tang et al. [13] and Zhu et al. [14] propose and highlight the advantages of not
using actual data from the source domain. The source model and the target data are
used by the algorithm in the adaptation process. As such a solution protects data
privacy, there is a rise in demand for similar works [13].

189

3 Problem Statement
Applications on smart or edge devices require continuous learning and updating of
their ML models as data characteristics change over time due to changes in the de-
vice’s environmental context, data collection from a new user or device, etc. This
change in data characteristics between different domains, referred to as domain shift,
drops the MLmodel’s performance and requires model adaptation to the new circum-
stances. These devices usually have limited energy and memory capacities which
should be considered while designing algorithms to be used by them. In addition,
the availability of labeled data is limited, requiring unsupervised learning techniques
like clustering to analyze, interpret and act on the data.

Clusters are traditionally represented by their centroids (e.g., mean, median, or
medoid). However, such representatives cannot always represent cluster-specific
characteristics completely. In a clustering model, knowing the range of values each
feature could take for each cluster is more valuable information that is used in this
study. Namely, each cluster could be represented as a range between which the data
points of the cluster lie, an idea used in the Inductive System Health Monitoring
(ISM) method introduced in [15]. Similarly, in the current study, each cluster of a
model is represented by its low and high value vectors i.e., the minimum and maxi-
mum values of each feature representing the data set, respectively. In addition, the
mean vector can be derived from the low and high vectors as needed. This idea can
be illustrated as follows. Suppose a clustering model represents different outdoor
scenarios where each cluster models a specific outdoor environment based on the
cellular network radio signals. Each of these clusters can be represented using the
range of low and high radio signal strengths of the considered features.

Domain shift phenomenon for clustering can cause appearing, disappearing, or
change in the ranges of the clusters. This study proposes a resource-efficient novel
domain adaptation algorithm using cluster representatives of low and high value vec-
tors. The algorithm is based on cluster integration and can be used in supervised,
unsupervised and semi-supervised setups to integrate source and target models. In
case of a supervised setup, both domain models consist of labeled classes and each
class can additionally be represented by a group of clusters. In an unsupervised set-
ting source and target models are presented by clustering solutions, while in case of
semi-supervised scenario, only source model is based on labeled data. In that way,
the source model can consist of classes of clusters, while the target model contains
just non-labeled clusters.

190

4 ProposedDomain IntegrationClusteringAlgorithm
4.1 Range-based correlation measure
This work introduces a range-based correlation measure that has been inspired by in-
terval decision-making, where the available information is usually presented by suit-
able intervals and comparisons. More specifically, we have studied how the overlap
of the interval alternatives’ evaluations have been used to express valued preferences
among the alternatives, introduced in [16].

Formally, given two sets of data instances A and B, the range-based correla-
tion R is defined by Eq. VI.1, where each set, e.g., A, is represented by two vec-
tors, denoted by lA and hA, of its low and high attributes’ values, respectively. In
addition, a special data vector mA is constructed (or selected) by applying some
preliminarily defined criterion. For example, in our experiments, we use the mean
vector of lA and hA, but it can also be a specific data instance in the set (e.g., its
medoid). Notice that d(., .) is the Euclidean distance between two data vectors. To
simplify the definition ofR given in Eq. VI.1, we use the abbreviation dAB to denote
d(lA, mA) + d(mB, hB).

R(A, B) =

1 if dAB < d(mA, mB)

d(mA,mB)
dAB

otherwise .
(VI.1)

Note that R is non-negative and symmetric for any pair of data sets. In addition, if
A = B, then R(A, B) = 0.

4.2 The proposed algorithm
This section formally introduces the proposed DIBCA algorithm. The algorithm is
used to integrate the clustering models of different but related domains. Assume that
C1 andC2 are respectively clustering models of the source and target domains, repre-
sented as C1 = {C1

1 , C1
2 , . . . , C1

m} and C2 = {C2
1 , C2

2 , . . . , C2
n}, where | C1 |= m

and | C2 |= n. Each cluster from these models can be represented by three value
vectors, low, mean, and high. For example, the representatives of a cluster C1

i can
be presented as lC1

i
, mC1

i
, hC1

i
. The algorithm uses the mean of each of these clus-

ters to determine the alignments between the clustering solutions of source and target
domains by cross-labeling, where the source model is applied on the target represen-
tatives and the target model on the source representatives. The alignments identified
are of three types: (i) both directions, (ii) source to target, and (iii) target to source.
When the association is in both directions, this implies that the clusters are similar
and are correlated well. In the second case, i.e., when the source representatives
are labeled using the target model, no action is performed as the target model is not
rich. For the third case, the range-based correlation measure described in Section 4.1
(Eq. VI.1) is used to find the correlations between the aligned clusters. Only if the

191

value obtained is less than the threshold (0.45 in this case), the clusters are considered
to be similar. This is followed by the integration phase, where the identified similar
(strongly correlated) clusters from both domains are merged to obtain common clus-
ters. The remaining clusters which did not undergo integration are left as private
clusters in their respective domains. As a result, the algorithm obtains two different
clustering models for each domain, an integrated model and an adapted source/target
model. The integrated clustering model consists of common clusters and private
clusters of both source and target. The obtained integrated clustering model is com-
posable and can be split into smaller adapted models consisting of private clusters of
the respective domain and common clusters. These models are respectively denoted
as adapted source and adapted target models and can be easily generated in addition
to the integrated model. The idea of common and private clusters is inspired from [9].
Figure 1 presents a high-level visual overview of the proposed DIBCA algorithm.

The pseudo-code of the algorithm is broken down into Algorithm VI.1 and Algo-
rithm VI.2. Algorithm VI.1 presents the overview of the main steps of the proposed
DIBCA algorithm, whereas AlgorithmVI.2 overviews the integration procedure, i.e.,
it describes how two closely correlated clusters are integrated.

In the case of labeled data, the source and target models are built by applying
the ISM algorithm on the instances of each class separately and merging together the
clustering models obtained on the different classes. In that way, each cluster will be
marked by a pair of labels representing its class and cluster, respectively. The DIBCA
algorithm can be used on such built models to identify the correlated clusters in order
to produce an integrated model. It is worth mentioning that if cross-class correlated
clusters are detected, this may be an indication of mislabeled instances which can
lead to further analysis of the correlated classes.

The algorithm is designed to be used for data with numerical features, categori-
cal features such as ordinal and nominal should be transformed into numerical values
to be used by the algorithm. While designing the algorithm, a conscious effort has
been made to make sure that DIBCA is resource efficient. It can be noted that the
algorithm performs all its operations on the cluster representatives instead of using
all the cluster data points, which significantly reduces the amount of computational
power and memory required. This makes the algorithm suitable to be run on edge
devices, known as ones with resource restrictions. Another characteristic of the al-
gorithm that is worth noting is that data privacy is not compromised as the algorithm
uses only the cluster representatives, which are artificial nodes.

The computational time complexity of the algorithm is approximated separately
for the two main parts of the algorithm: identifying cluster correlations and cluster
integration. O(mnnf) is the time complexity of the part that finds the correlations
between the source and target clustering models, where m and n are the number of
clusters in source and target domains, nf is the number of the data set features. In the
integration phase, low and high value vectors of length nf are computed for each of
the common clusters. These vectors are obtained by comparing the feature values of

192

Algorithm VI.1 Domain integration clustering algorithm for updating the clustering
solution to be adapted to both source and target domains.
Input: Clustering models C1 (source model) and C2 (target model), where each
cluster Cj

i is represented by l
Cj

i
and h

Cj
i

for each Cj
i ∈ C1 ∪ C2 do

find m
Cj

i

end for
Label mC1

i
, (i = 1, . . . , m) using C2

Label mC2
i
, (i = 1, . . . , n) using C1

if (mC1
i
∈ C2

i) ∧ (mC2
i
∈ C1

i) then
Correlation(C2

i , C1
i), Eq. VI.1 = 0

end if
for each C1

i ∈ C1 do
for each C2

i ∈ C2 do
if Correlation(C2

i , C1
i), Eq. VI.1 < threshold (0.45) then

ClusterList.add(C2
i)

end if
end for
if ClusterList ̸= ∅ then

Integration(C1
i , ClusterList), Algorithm VI.2

end if
end for
Clusters not integrated are private in their respective domains.

Algorithm VI.2 Integrating clusters to build common clusters.
Input: Cluster representatives of C1

i and ClusterList = {C2
j , C2

k …}, i.e., lC1
i
, hC1

i
;

lC2
j
, hC2

j
; lC2

k
, hC2

k
; …, respectively

for i in the range(length(lC1
i
)) do

low of union.append(min(lC1
i
, lC2

j
, lC2

k
…))

high of union.append(max(hC1
i
, hC2

j
, hC2

k
…))

end for
low, high value vectors of the new integrated cluster = (low of union, high of union)

the clusters to be integrated and finding the minimum and maximum value for each
feature; this can be approximated to O(ncnf), where nc is the number of identified
final correlations between the source and target. Summing both expressions, the
computational time complexity of the algorithmwould beO(mnnf +ncnf). Finally,

193

Figure 1: A high-level overview of the proposed Domain Integration Bi-correlation Clustering Algorithm. Initially,
the source and target clustering models are crossly applied to each other in order to identify correlations. This
is followed by the integration phase, where similar clusters from both domains are merged to obtain common
clusters or retained as private clusters of the respective domains.

it can be approximated to O(mnnf), since nc < mn.

5 Experimentation
The properties of DIBCA algorithm are studied and evaluated on two data sets (real-
world and publicly available data) under a few different experimental setups. The
public data set is associated to multi-class classification tasks and is used to explore
the potential of the proposed algorithm in data labeling. Details about the experi-
ments are presented in Sub-section 5.1.1. The real-world data set contains measure-
ments from trackers used in smart logistics for monitoring and tracking goods. This
data set is used to evaluate the potential of the algorithm in domain adaptation tasks,
we compare the performance of the three models (i.e., integrated, adapted source, and
adapted target models) generated by the DIBCA algorithm with the original source

194

and target models. Further details about the experiments conducted using the real-
world data set are presented in Sub-section 5.2.1.

5.1 Public data
We use a publicly available real-world HAR data set, PAMAP2 [17], taken from the
UCI machine learning repository, to evaluate the algorithm’s performance concern-
ing labeling in semi-supervised contexts. The data set contains regular activity of
nine subjects, eight male and one female, with an average age of 27.22. It presents
18 different activities and contains 52 attributes and 3, 850, 505 instances. Out of the
available 52 attributes, 31 are used in the study. Features related to the orientation
and one of the accelerometers are not considered as they are invalid and not properly
calibrated, respectively as explained in the data description.

5.1.1 Experimental Setup
In the preprocessing phase, initially, the data set is cleaned. All the data points be-
longing to activity 0 are dropped as this activity corresponds to transient activities,
and the data set description suggests to discard them. The column corresponding to
the heart rate is dropped as most of the rows have missing values for this feature.
This is followed by removing rows containing missing values. Similar to what is
done in [10, 18], the three dimensional data collected from each of the accelerom-
eter, gyroscope, and magnetometer at each measurement unit are aggregated using
a =

√
x2 + y2 + z2 formula. Once the data is divided into the source and target,

each part of the data set is standardized separately using the z-score, z = (x− µ)/s.
Labeled data is the most sort after for many data analysis tasks but is sparsely avail-
able. Labeling data set is often costly [2], requiring the manual work of many domain
experts and users. The PAMAP2 [17] data set is used to illustrate how the proposed
algorithm could be used to label the data in a semi-supervised context where the la-
bels are known for source data but not for the target. Assuming that the target data
is grouped into different clusters, each representing one class of data points. The
proposed algorithm can be used to find the correlations between the source and tar-
get, thus enabling the labeling of the clusters and, in turn, the data points assigned to
them.

To showcase the algorithm’s potential in data labeling, two experimental setups,
namely A.I and A.II are studied. In both A.I and A.II, the experiment is conducted
on all the users one by one in the following way. Data is initially divided between
source and target domains, during which it is made sure that each domain contains
all the activities of a user. In experiment A.I, sampling with replacement is used
while dividing the data into source and target domains. For each user activity, the
source and target domains have 80% and 20% of sampled data with replacement,
respectively. In this experimental setting, the source and target clusters may have a

195

closer resemblance to each other, as there could be a possibility of having overlapping
data points. In experiment A.II, sampling without replacement is used. That is for
each user activity, after considering a sample of 80% for the source domain, rest
of the 20% data is used to represent the target domain. Once divided, data in both
source and target domains are clustered based on the class labels. The proposed
algorithm is then used to find the correlations between the source and target domain
in experiments A.I and A.II, which can help in data instance labeling.

5.2 Real-world use case
The proposed algorithm is also evaluated in a use case from smart logistics, pro-
vided by our industrial partner. Namely, the algorithm is applied to integrate Global
Navigation Satellite Systems (GNSS) activation models built on different domains
(devices/locations) into an integrated model. GNSS is the positioning technique used
for detecting the tracker’s current position, which is known to perform well in open-
sky environments. However, the trackers may be in any place, such as open outdoors,
crowded city areas, indoors etc. Therefore it is necessary to perform context-aware
control of GNSS activation by automatically and accurately detecting indoor/outdoor
localization of trackers with low battery consumption. This is based on the use of
radio signals received from Long-Term Evolution (LTE) base stations to detect the
environment (indoor/outdoor). The data set used contains radio signal measurements
collected by five smart devices (trackers) and their geographical location in vari-
ous environmental scenarios. The devices collected various parameters like cell Id,
GNSS location, device number, etc., out of which eight features, depicting the signal
strength from the cells and details about the number of cells receiving the signals are
used to build the GNSS component activation model.

We have studied two experimental domain integration scenarios (B.I and B.II)
in which the source and target domains represent two different locations based in
South Sweden. Both experiments are performed with data from a single device. The
source domain is based on data collected from a device used in a comparatively big
city, while the target domain uses data covering a nearby rural area.

5.2.1 Experimental Setup
Before conducting the experiments, the data set is standardized using the z-score
in both the experimental scenarios B.I and B.II. In the experimental setting B.I, the
training and test data sets are standardized separately, whereas, in the experimental
setting B.II, the data with and without GNSS location are standardized separately.
Clustering of source and target domains in experiments B.I and B.II is done by using
the algorithm proposed in [19], which is based on [15]. By using the DIBCA algo-
rithm, three new updated models are generated, an integrated model and two adapted
models, one for the source domain and one for the target domain. These models can

196

contain two types of clusters, private and common. Private clusters are the remaining
original clusters, which did not undergo integration. The source and target domains
have their own private clusters. Common clusters are those obtained after integrating
two or more clusters from the source and target clustering models. The integrated
model contains all the source and target private clusters and common clusters. In
comparison, the adapted source and target models contain the common clusters, and
private clusters of either source or target, respectively.

In all the experimental scenarios, the three newly generated models, along with
the initial source and target models, are used to analyze how each model performs
on the source and target domains. Therefore, the models are evaluated on the test
data from both domains. For the experimental setting B.I, models of both source and
target domains are built using the first 80% of the data with GPS coordinates. The
remaining 20% of the data with GPS coordinates and all the data points without GPS
coordinates are used for testing purposes. The experiment aims to analyze how the
algorithm performs when notion of time is considered. Only a single iteration of the
experiment is conducted as the chronological order of data is taken into account. For
the experimental setting B.II, the source and target models are built using 90% of the
data with GPS coordinates. The remaining 10% of the data with GPS coordinates
and all the data points without GPS coordinates are used for testing purposes. Ten
fold cross-validation is used to conduct the experiments and split the data with GPS
location into training or test data sets.

6 Results and Discussion
6.1 Public data
The results of experiments A.I and A.II conducted on the PAMAP2 HAR data set
are presented in Tables 1 and 2, respectively. As stated in Sub-section 5.1.1, the data
of each user is divided into two parts, source and target, using sampling with and
without replacements in experiments A.I and A.II, respectively. In the tables, the first
column presents the User Id, followed by information about the model and data set
used (Model-Data). Mt,Ms, Dt, andDs stand for target model, source model, target
data and source data, respectively. Next column presents information about how
each activity performed by the respective user are correlated between the source and
target domains. Cells are colored green, red, or grey depending on if the correlation
has been identified to the same class cluster, different class cluster, or no correlation,
respectively. This is followed by a numerical summary of the correlations in columns
4 and 5. The last column presents the final result, i.e., the information about what
percentage and number of target clusters are labeled correctly.

In Table 2, activity 13 for user 4 is labeled incorrectly when the target model
is used on source data, thus correlating it to a different cluster. This is the only

197

Table
1:Experim

entA
.I:Labeling

oftargetd
ata

in
sem

i-supervised
scenario

using
sam

pling
w
ith

replacem
ent-(80%

)source
and

(20%
)targetd

ata
foreach

user

U
Id

M
odel-Data

A
ctivities

C
orrectcorr.

N
o
corr.

C
lusters

Labeled
C
orrectly

1
2

3
4

5
6

7
12

13
16

17
24

(%
)

(%
)

in
Target(%

,N
um

ber)

U1
M

t
−

D
s

91.6
8.3

100.0
(12)

M
s

−
D

t
100.0

0.0

U2
M

t
−

D
s

83.3
1.7

83.3
(10)

M
s

−
D

t
83.3

1.7

U3
M

t
−

D
s

87.5
12.5

87.5
(7)

M
s

−
D

t
87.5

12.5

U4
M

t
−

D
s

90.9
9.1

81.8
(9)

M
s

−
D

t
90.0

10.0

U5
M

t
−

D
s

91.6
8.3

91.7
(11)

M
s

−
D

t
91.6

8.3

U6
M

t
−

D
s

50.0
50.0

66.7
(8)

M
s

−
D

t
66.7

33.3

U7
M

t
−

D
s

81.8
18.2

90.9
(10)

M
s

−
D

t
90.9

9.1

U8
M

t
−

D
s

83.3
16.7

75.0
(9)

M
s

−
D

t
75.0

25.0

U9
M

t
−

D
s

0.0
100.0

100.0
(1)

M
s

−
D

t
100.0

0.0
A
vg

80.3
18.0

86.3
std

22.6
23.3

10.4

N
ote.A

ctivities9-11,18-20
are

m
issing

forallusers,so
these

are
rem

oved
from

the
table.

198

case where a correlation between two different activities of the source and target is
misidentified, and hence, the cell is marked in red. However, this did not impact
the final result of labeling. The target cluster is labeled correctly since the algorithm
gives higher weight to correlation obtained using source model (which is built on a
richer data set) on target data.

From both the tables, it can be seen that the algorithm has performed decently
well in correctly labeling the target instances. In Experiment A.I, on an average
86.3% of the clusters are correctly labeled; this value has gone up to 91.1% in ex-
periment A.II, displaying the algorithm’s ability in data labeling. It can be noted that
even though the algorithm was unable to identify labels for some clusters, none of
them were incorrectly labeled, which is a positive sign and displays the algorithm’s
potential in being used for automatic data labeling. It is worth to further study this
property of the algorithm by evaluating the algorithm capacity in the annotation of
data in different applied contexts and data sets.

6.2 Real-world use case
Figures 2a and 2c present the performance of different clustering models in exper-
imental scenario B.I, with respect to accuracy and F-measure, respectively. In this
experimental scenario, even though there is a drop in the overall performance of all
models compared to experiment B.II, both integrated and adapted source/target mod-
els perform better based on accuracy than the initial source and target models. In
addition, their performance is comparable to that of the initial models based on the F-
measure. This is a promising result, as the time series data is obtained and analyzed
chronologically in real-world scenarios.

The performance of the target model is the least in terms of accuracy and F-
measure on both source (47.77%, 0.16) and target data (35,03%, 0.44). This could
be due to insufficient data in the target domain to detect various cellular network sce-
narios. The figures show that both integrated and adapted source/target models have
similar performance; in such cases, using adapted models saves resources as private
clusters of other domains are not used in these models.

The results obtained by experiment B.II are presented in Figures 2b and 2d, in
terms of average accuracy and average F-measure, respectively. The plots show that
the best-performing models are the source model applied to the source data (68.68%,
0.49) and the target model applied to the target data (92.96%, 0.95). In terms of
both measures, the adapted source/target model performs better when compared to
the integrated model. These results are logical as the adapted model does not contain
private clusters of the other domain. With respect to experiment B.II, it is worth
noting that even though the performance of the adapted source/target model and the
integrated model are not the best, they demonstrate equally good performance on
both source and target data, unlike the initial source and target models, which have

199

Table
2:Experim

entA
.II:Labeling

oftargetd
ata

in
sem

i-supervised
scenario

using
sam

pling
w
ithoutreplacem

ent-(80%
)source

and
(20%

)targetd
ata

foreach
user

U
Id

M
odel-Data

A
ctivities

C
orrectcorr.

N
o
corr.

C
lusters

Labeled
C
orrectly

1
2

3
4

5
6

7
12

13
16

17
24

(%
)

(%
)

in
Target(%

,N
um

ber)

U1
M

t
−

D
s

91.6
8.3

100.0
(12)

M
s

−
D

t
100.0

0.0

U2
M

t
−

D
s

75.0
25.0

83.3
(10)

M
s

−
D

t
83.3

16.7

U3
M

t
−

D
s

75.0
25.0

100.0
(8)

M
s

−
D

t
100.0

0.0

U4
M

t
−

D
s

72.7
18.2

81.8
(9)

M
s

−
D

t
90.0

10.0

U5
M

t
−

D
s

83.3
16.7

100.0
(12)

M
s

−
D

t
100.0

0.0

U6
M

t
−

D
s

50.0
50.0

66.7
(8)

M
s

−
D

t
66.7

33.3

U7
M

t
−

D
s

90.9
9.1

100.0
(11)

M
s

−
D

t
100.0

0.0

U8
M

t
−

D
s

83.3
16.7

88.3
(10)

M
s

−
D

t
83.3

16.7

U9
M

t
−

D
s

0.0
100.0

100.0
(1)

M
s

−
D

t
100.0

0.0
A
vg

80.3
19.2

91.1
std

23.5
23.5

11.5

N
ote.A

ctivities9-11,18-20
are

m
issing

forallusers,so
these

are
rem

oved
from

the
table.

200

(a) (b)

(c) (d)

Figure 2: Experimental results of smart logistics use-case: (a) Experimental Scenario B.I: accuracy scores pro-
duced by the different models on source and target data.; (b) Experimental Scenario B.II: average accuracy
produced by the different models on source and target data.; (c) Experimental Scenario B.I: F-measure scores
produced by the different models on source and target data.; and, (d) Experimental Scenario B.II: average
F-measure scores produced by the different models on source and target data.

higher performance in their own domains. The high performance of the target model
on its own data could be due to over-fitting, as the data set is relatively small.

We believe that the general increase in performance for B.II, in comparison with
B.I, is due to the fact that in the case of B.II, similar cellular network scenarios to
ones met in the test data are already seen while building the model in most cases.
In experiment B.I, as the test data contains the last chunk of data (except for data
points without GPS coordinates), they might have slightly different characteristics
(new and unseen scenarios) than the data the model is trained on. A larger data set
where the training data covers a big variety of cellular network scenarios may solve
this problem.

7 Conclusions and Future Work
This study proposes a novel domain integration bi-correlation clustering algorithm
(DIBCA). The proposed algorithm is designed by taking the computational as well as
memory requirements into consideration. As the algorithm uses cluster representa-
tives to perform its operations, the number of resources used is reduced significantly.

201

This also preserves the privacy of the data set, as the algorithm does not use actual
data points. Different properties of the algorithm are evaluated on two data sets,
PAMAP2, a publicly available HAR data set from the UCI machine learning reposi-
tory, and a real-world data set related to the smart logistics domain supplied by one
of our industrial partners. The algorithm’s performance on the smart logistics use-
case data is promising. The performance of integrated, adapted source/target models
generated using DIBCA is better or comparable to the original models of the consid-
ered domain with respect to accuracy and F-measure. The experimental results on
the HAR data set have shown that the proposed algorithm is able to correctly label
up to 91.1% of the total available clusters in the target domain. In addition to this,
none of the clusters are mislabeled. Based on the results, DIBCA has the potential
to be applied for labeling tasks as a reliable automatic data annotation solution.

As a part of our future work, the labeling property of the algorithm will be fur-
ther explored by studying new experimental scenarios on new data sets. In addition,
our proposed algorithm will be tested in the area of domain adaptation for new use
cases like personalized user recommendations to evaluate its potential. The plan also
includes evaluating the algorithm on richer data sets from smart logistics use cases
that our industrial partner provides.

Acknowledgements
This work is a part of Sony RAP 2020 Project, “Distributed and Adaptive Edge-based
AI Models for Sensor Networks”.

References
[1] S. J. Pan and Q. Yang. “A Survey on Transfer Learning”. In: IEEE Transac-

tions on Knowledge and Data Engineering 22.10 (2010), pp. 1345–1359. DOI:
10.1109/TKDE.2009.191.

[2] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He. “A
Comprehensive Survey on Transfer Learning”. In: Proceedings of the IEEE
109.1 (2021), pp. 43–76. DOI: 10.1109/JPROC.2020.3004555.

[3] M. AlShehhi, E. Damiani, and D. Wang. “Toward Domain Adaptation for
small data sets”. In: Internet of Things 16 (2021), p. 100458. ISSN: 2542-6605.
DOI: https://doi.org/10.1016/j.iot.2021.100458.

[4] Y. Madadi, V. Seydi, K. Nasrollahi, R. Hossieni, and T. Moeslund. “Deep Vi-
sual Unsupervised Domain Adaptation for Classification Tasks: A Survey”.
In: IET Image Processing 14.14 (2020), pp. 3283–3299. ISSN: 1751-9659. DOI:
10.1049/iet-ipr.2020.0087.

202

https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/https://doi.org/10.1016/j.iot.2021.100458
https://doi.org/10.1049/iet-ipr.2020.0087

[5] H. Tang, Y. Wang, and K. Jia. “Unsupervised domain adaptation via distilled
discriminative clustering”. In:Pattern Recognition 127 (2022), p. 108638. ISSN:
0031-3203. DOI: https://doi.org/10.1016/j.patcog.2022.108638.

[6] H. Wang, J. Tian, S. Li, H. Zhao, F. Wu, and X. Li. “Structure-conditioned
adversarial learning for unsupervised domain adaptation”. In: Neurocomput-
ing 497 (2022), pp. 216–226. ISSN: 0925-2312. DOI: https://doi.org/10.
1016/j.neucom.2022.04.094.

[7] J. Li, G. Li, Y. Shi, and Y. Yu. Cross-Domain Adaptive Clustering for Semi-
Supervised Domain Adaptation. 2021. DOI: 10.48550/ARXIV.2104.09415.
URL: https://arxiv.org/abs/2104.09415.

[8] Z. Deng, Y. Luo, and J. Zhu. “Cluster Alignment With a Teacher for Unsuper-
vised Domain Adaptation”. In: 2019 IEEE/CVF International Conference on
Computer Vision (ICCV). 2019, pp. 9943–9952. DOI: 10.1109/ICCV.2019.
01004.

[9] G. Li, G. Kang, Y. Zhu, Y. Wei, and Y. Yang. “Domain Consensus Clus-
tering for Universal Domain Adaptation”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). June 2021,
pp. 9757–9766.

[10] W. Lu, Y. Chen, J. Wang, and X. Qin. “Cross-domain activity recognition via
substructural optimal transport”. In: Neurocomputing 454 (2021), pp. 65–75.
ISSN: 0925-2312. DOI: https://doi.org/10.1016/j.neucom.2021.04.
124. URL: https://www.sciencedirect.com/science/article/pii/
S0925231221007025.

[11] J. Xu, J. Song, Y. Sang, and L. Yin. “CDAML: a cluster-based domain adaptive
meta-learning model for cross domain recommendation”. In:World Wide Web
(2022), pp. 1573–1413. DOI: 10.1007/s11280-022-01068-5.

[12] N. Gunasekara, H. Gomes, A. Bifet, and B. Pfahringer. “Adaptive Online Do-
main Incremental Continual Learning”. In:Artificial Neural Networks andMa-
chine Learning – ICANN 2022. Ed. by E. Pimenidis, P. Angelov, C. Jayne, A.
Papaleonidas, and M. Aydin. Cham: Springer International Publishing, 2022,
pp. 491–502.

[13] S. Tang, Y. Zou, Z. Song, J. Lyu, L. Chen, M. Ye, S. Zhong, and J. Zhang.
“Semantic consistency learning on manifold for source data-free unsupervised
domain adaptation”. In:Neural Networks 152 (2022), pp. 467–478. ISSN: 0893-
6080.

[14] M. Zhu. “Source Free Domain Adaptation by Deep Embedding Clustering”.
In: 2021 18th Int. Computer Conference on Wavelet Active Media Technol-
ogy and Information Processing (ICCWAMTIP). 2021, pp. 309–312. DOI: 10.
1109/ICCWAMTIP53232.2021.9674068.

203

https://doi.org/https://doi.org/10.1016/j.patcog.2022.108638
https://doi.org/https://doi.org/10.1016/j.neucom.2022.04.094
https://doi.org/https://doi.org/10.1016/j.neucom.2022.04.094
https://doi.org/10.48550/ARXIV.2104.09415
https://arxiv.org/abs/2104.09415
https://doi.org/10.1109/ICCV.2019.01004
https://doi.org/10.1109/ICCV.2019.01004
https://doi.org/https://doi.org/10.1016/j.neucom.2021.04.124
https://doi.org/https://doi.org/10.1016/j.neucom.2021.04.124
https://www.sciencedirect.com/science/article/pii/S0925231221007025
https://www.sciencedirect.com/science/article/pii/S0925231221007025
https://doi.org/10.1007/s11280-022-01068-5
https://doi.org/10.1109/ICCWAMTIP53232.2021.9674068
https://doi.org/10.1109/ICCWAMTIP53232.2021.9674068

[15] D. L. Iverson. “Inductive SystemHealthMonitoring.” In: IC-AI. 2004, pp. 605–
611.

[16] V. Boeva and B. De Baets. “A new approach to admissible alternatives in inter-
val decision making”. In: 2004 2nd International IEEE Conference on ’Intel-
ligent Systems’. Proceedings (IEEE Cat. No.04EX791). Vol. 1. 2004, 110–115
Vol.1. DOI: 10.1109/IS.2004.1344647.

[17] A. Reiss and D. Stricker. Introducing a New Benchmarked Dataset for Activity
Monitoring. 2012. URL: https://archive.ics.uci.edu/ml/datasets/
pamap2+physical+activity+monitoring.

[18] J. Wang, Y. Chen, L. Hu, X. Peng, and P. S. Yu. “Stratified Transfer Learning
for Cross-domain Activity Recognition”. In: 2018 IEEE International Confer-
ence on Pervasive Computing and Communications (PerCom). 2018, pp. 1–
10. DOI: 10.1109/PERCOM.2018.8444572.

[19] S. Abghari, V. Boeva, E. Casalicchio, and P. Exner. “An Inductive System
Monitoring Approach for GNSS Activation”. In: Artificial Intelligence Appli-
cations and Innovations. Ed. by I. Maglogiannis, L. Iliadis, J. Macintyre, and
P. Cortez. Cham: Springer International Publishing, 2022, pp. 437–449.

204

https://doi.org/10.1109/IS.2004.1344647
https://archive.ics.uci.edu/ml/datasets/pamap2+physical+activity+monitoring
https://archive.ics.uci.edu/ml/datasets/pamap2+physical+activity+monitoring
https://doi.org/10.1109/PERCOM.2018.8444572

Paper VII
A Domain Adaptation Technique
through Cluster Boundary Integration

Vishnu Manasa Devagiri, Veselka Boeva, and Shahrooz Abghari

Submitted for journal publication (under review)

Abstract

Many machine learning models deployed on smart or edge devices
experience a phase where there is a drop in their performance due to the
arrival of data from new domains. This paper proposes a novel unsuper-
vised domain adaptation algorithm called DIBCA++ to deal with such
situations. The algorithm uses only the clusters’ mean, standard devi-
ation, and size, which makes the proposed algorithm modest in terms
of the required storage and computation. The study also presents the
explainability aspect of the algorithm. DIBCA++ is compared with its
predecessor, DIBCA, and its applicability and performance are studied
and evaluated in two real-world scenarios. One is copingwith the Global
Navigation Satellite System activation problem from the smart logistics
domain, while the other identifies different activities a person performs
and deals with a human activity recognition task. Both scenarios involve
time series data phenomena, i.e., DIBCA++ also contributes towards ad-
dressing the current gap regarding domain adaptation solutions for time
series data. Based on the experimental results, DIBCA++ has improved
performance compared to DIBCA. The DIBCA++ has performed better
in all human activity recognition task experiments and 82.5% of experi-
mental scenarios on the smart logistics use case.

The results also showcase the need and benefit of personalizing the
models using DIBCA++, along with the ability to transfer new knowl-
edge between domains, leading to improved performance. The adapted
source and target models have performed better in 70% and 80% of cases
in an experimental scenario conducted on smart logistics.
Keywords: Clustering techniques, Domain adaptation, Big data, Clus-
ter integration

205

1 Introduction
Many smart applications are used in different types of environments, which causes
a drop in models’ performance due to changes in the data characteristics of these en-
vironments. In such circumstances, the model needs to be updated to accommodate
the new data characteristics. Domain adaptation, a subbranch of transfer learning,
can be used to achieve this. In transfer learning [1], the source and target domains
can be completely different, whereas, in domain adaptation [2], the source and tar-
get domains are related, addressing the same problem but can have different data
distributions.

This work is an extension of [3], in which the Domain Integration Bi-correlation
Clustering Algorithm (DIBCA) is introduced. The algorithm initially identifies the
correlations between the source and target domain models and then integrates similar
clusters from the two domains. DIBCA produces an integrated clustering model that
can be used for both domains. The produced model is composable and can be split
into two lighter adapted models, one per domain. This facilitates knowledge trans-
fer across the domains and enriches the models with knowledge from other domains.
DIBCA has used a learning algorithm proposed by [4] that presents each cluster using
the low and high attribute value vectors as representatives (also referred to as mini-
mum bounding box); hence DIBCA is also designed to handle clusters using these
low and high attribute value vectors. The algorithm’s performance has been studied
and evaluated in the areas of domain adaptation on a smart logistics use case using
data obtained from our industrial partner and automatic data labeling on a publicly
available Human Activity Recognition (HAR) data set [5]. The preliminary experi-
mental results show the algorithm’s potential in these two areas. On average, with
respect to the domain adaptation task, the integrated and adapted models perform
comparably or better than the source and target models, and for the labeling task,
DIBCA labels up to 91.1% of classes correctly.

The cluster representatives (low and high attribute value vectors) used in the
DIBCA and the learning algorithm are sensitive to outliers. For example, if one data
point is far away from the other population of the cluster, it impacts how the cluster
is represented. In order to mitigate this effect, the DIBCA and the learning algo-
rithm are optimized in the current study to use the mean, standard deviation, and size
of each cluster as representatives. This makes the optimized algorithm, DIBCA++,
more robust to handling outliers than the previous version, as such information bet-
ter reflects the clusters’ actual data characteristics. In the current optimized version,
instead of bounding boxes based on low and high attribute value vectors, confidence
intervals are used to determine cluster boundaries and predict new data points of a
cluster. This idea is inspired by the work done by Davidsson in [6], where the distri-
bution of data points of each attribute or feature is assumed to be normally distributed.
Since this is not generally the case in all situations, we use Chebyshev’s inequality
to determine the interval describing cluster boundaries. Information about the im-

206

provements or modifications made to DIBCA++ and the learning algorithm when
compared to its predecessors is elaborated further in Sections 3.3 and 3.4, respec-
tively.

In this work, DIBCA++ (the optimized DIBCA) is introduced, and its modules
are formally described. DIBCA++ is evaluated and compared with the DIBCA al-
gorithm on richer data sets and in a variety of experimental scenarios to study its ro-
bustness and applicability. The summary of contributions of the work is elaborated
below:

1. An improved learning algorithm is devised and used for the initial building of
the domain cluster model.

2. An optimized version of the DIBCA algorithm (DIBCA++), robust to outliers,
is proposed.

3. The potential of DIBCA++ in domain adaptation tasks is evaluated in new
specially designed experimental scenarios in order to study and gain a complete
and in-depth picture of the algorithm characteristics, e.g., we explore

a. how knowledge obtained from one device or user can be transferred to a
different device or user. For example, this can also be used to help avoid
a cold start.

b. the usefulness of the proposed algorithm in use-cases that require person-
alization, e.g., personalized predictions and recommendations.

c. how the similarity between the data of the source and target domains
affects the algorithm performance.

d. the performance of the clustering models generated by the DIBCA++
compared to that of the clustering model built on the integrated data from
both domains.

e. how the algorithm explainability features can be used to support the un-
derstanding and interpretation of the produced results.

This section is followed by related work in Section 2, where an overview of
relevant existing studies is presented. Next, we provide a detailed description of the
proposed algorithm along with a discussion about its explainability and applicability
in Section 3. Details about the data sets and evaluation measures are presented in
Sections 4 and 5, respectively. The experiments conducted in our study are explained
in Section 6. The results from the latter are analyzed and discussed in Section 7.
Finally, the conclusions and future work of the study are presented in Section 8.

207

2 Related Work
This section gives an overview of the domain adaptation state-of-the-art studies re-
lated to our work.

Transfer learning refers to transferring the knowledge acquired in one usually
large (source) model, with rich knowledge, to another (target) model that is typically
smaller. It aims to improve learners’ performance on target domains by exploiting
knowledge acquired from another task or domain (the source) [1]. In comparison
with continual learning [7], it does not involve continuous adaptation after learning
the target task. Moreover, performance on the source task(s) is not considered during
transfer learning. Pan and Yang [8] and Zhuang et al. [1] have published studies
that overview recent works in the area of transfer learning. Pan and Yang [8] in
their work review and categorize transfer learning works in a wide range of fields
including classification, regression, and clustering. They categorize transfer learning
into three categories, inductive, transductive, and unsupervised, and highlight that
more attention might be towards unsupervised transfer learning in the future. In the
work done by Zhuang et al. [1] the focus of review is on one type of transfer learning
where the source and target have the same set of attributes, named homogeneous
transfer learning. The work done by [9] is also a survey, but it focuses on deep
unsupervised domain adaptation dealing with classification problems.

Domain adaptation is a subbranch of transfer learning, where the knowledge is
transferred between two domains addressing the same problem, having different data
distributions [2]. In other words, it relaxes the classical machine learning assumption
of having training and testing data drawn from the same distribution [10]. Domain
adaptation is widely used in various applications where training data distribution is
different from the data distribution that is used in real-time. Some examples include
personalized recommender systems and autonomous vehicles. Adversarial cluster-
ing is one of the popular methods used to reduce the shift between the source and
target domains [11, 12]. Authors of [11] propose Cross-domain Adaptive Cluster-
ing, a semi-supervised domain adaptation approach. In [12] an unsupervised domain
adaptation algorithm capable of preserving the inter-class compactness is proposed
for image classification. Hundschell et al. [13] in their work evaluate two state-of-
the-art adversarial clustering techniques one based on Recurrent Neural Networks,
called VRADA, and the other based on Convolutional Neural Networks, called Co-
DATS on four publicly available time-series data sets. Li et al. [14] study the univer-
sal domain adaptation problem, where the source and target domains have different
label spaces. A novel domain consensus clustering algorithm is proposed, which sep-
arates the common and private clusters of both domains. For the common clusters,
the class alignment technique is used to minimize the distribution shift. Xu et al. [15]
use domain adaptive meta-learning to avoid cold start in recommender systems.

One of the concerns in the field of domain adaptation is the privacy of source
data. When the model from the source domain is being adapted to the target domain,

208

the privacy of the source data is not protected in many of the studies. Studies such as
[16, 17] highlight the importance and need for source data-free domain adaptation al-
gorithms to preserve the privacy of source data. In [16], the authors propose a source
data-free self-supervised learning method entitled semantic consistency learning on
manifold. In the work of [17], which is also a source data-free domain adaptation
algorithm, initially pseudo labels and prediction confidence for the target data are ob-
tained using the source model. This is followed by using high-confidence prediction
samples to cluster target data toward the centers of these samples.

Most of the existing domain adaptation approaches are based on deep learning [9,
18] or semi-supervised learning [11, 19] models that require significant computa-
tional resources, which make them inappropriate to be used on the edge devices. In
the work [18], unsupervised domain adaptation is treated as the discriminative clus-
tering task on target data based on information from closely related labeled source
data. The authors propose a novel algorithm entitled DisClusterDA. Orbes-Arteainst
et al. [19] use knowledge distillation to generalize deep neural networks so that they
can be used in semi-supervised domain adaptation problems. Some recent develop-
ments in the online domain of incremental continual learning [20] are worth to be
studied in this research context. Gunasekara et al. [20] in their work propose a novel
domain adaptation algorithm using an Online Domain Incremental Pool (ODIP) of
learners and dynamic task predictor. The task predictor selects the appropriate neural
network for the current task from the ODIP.

In summary, the majority of the research work done in the field of domain adap-
tation is in the areas intersecting deep learning and computer vision. Domain adapta-
tion in the temporal dimension is also less presented in the literature. Novel domain
adaptation techniques that are resource-efficient and able to support robust model
adaptation to new contexts are evidently needed. The proposed DIBCA++ is based
on clustering techniques, which is its distinguishing characteristic and also makes the
algorithm applicable in resource-constrained computational setups. Our work con-
tributes towards domain adaptation for time series data, which, as mentioned above,
is a less explored area compared to computer vision and other deep learning algo-
rithms applications. In addition, the algorithm uses a data-free approach, i.e., only
the clustering models of source and target are required in the adaptation process. This
preserves the privacy of both source and target domains.

3 Proposed Algorithm
In this paper, we propose DIBCA++ (an optimized version of DIBCA), and an opti-
mized version of the learning algorithm used in [21] to do initial clustering, such that
both these algorithms are robust to outliers. The DIBCA algorithm was designed to
be used in combination with clustering algorithms like Inductive System health Mon-
itoring (ISM), proposed initially in [4] and later adapted in [21], using low and high

209

attribute value vectors of a cluster as cluster representatives (also called boundaries).
The low and high attribute vectors are derived using the least and highest values for
each attribute of a cluster, respectively. This makes them sensitive to the outliers,
implying that even if one data point (or one of its attributes) is located away from the
densely populated area of the cluster, it impacts the cluster representation.

In DIBCA++ and the learning algorithm proposed, this is eliminated by estimat-
ing the cluster boundaries using the cluster’s mean and standard deviation. Mean,
standard deviation, and additionally cluster size are considered representatives in
the current version. In [6], the author uses the probability density function of the
normally distributed data (assuming data is normally distributed) to obtain the clus-
ter boundaries. However, not all data is normally distributed, hence, in the current
work, we use Chebyshev’s inequality [22] to determine the cluster boundaries with
the help of the clusters’ mean, standard deviation, and a variable k. The value of k
is determined based on the confidence level at which the cluster boundaries are de-
fined. The advantage of using Chebyshev’s inequality is that it holds true for a wide
range of distributions. The proposed algorithm is intended to transfer existing his-
torical knowledge to a model that will be used in a new domain. The algorithm can
update or adapt the existing clustering solution, considering the data characteristics
of newly added domains. This enriches the clustering solutions of both source and
target domains.

To facilitate the reader in the forthcoming explanation of different parts of our
DIBCA++ algorithm, we summarize the used notations alphabetically in Table 1.

Table 1: Summary of notations used

C1: Source model
C2: Target model
C1

i : Cluster i of Source domain
C2

i : Cluster i of Target domain
d: Data point
d(., .): Euclidean distance between two data vectors
D: Labeled data set
hA: Higher boundary value vector of Cluster A
k: Real number (1), for Chebyshev's inequality
lA: Lower boundary value vector of cluster A
mA: Mean value vector of cluster A
n: Number of clusters in source domain
ncorr : Identified correlations between source and

target domains
nc: Number of clusters
nd: Number of data points in the test set
o: Number of clusters in target domain
R(., .): Range based distance measure between two

clusters
sA: Size of cluster A
T : Threshold
XA: Random variable of Cluster A
σA: Standard deviation value vector of cluster A

210

3.1 Model Generalization and Cluster Representation
The initial clusteringmodel of the domain (historical/source and the new domain) can
be built using any partitioning or a hierarchical clustering algorithm. The important
part is that for each cluster, A, in the built model, three entities, mean value vector
(mA), standard deviation value vector (σA), and the size of the cluster (sA) are stored
which are used as cluster representatives. mA and σA are obtained by calculating the
mean and standard deviation of each attribute of a cluster. The cluster size is needed
to recalculate the mean and standard deviation of the integrated clusters.

Cluster representatives σA, mA together with a real variable k (k > 1) are used
to define a confidence area or boundaries for each cluster based on Chebyshev’s
inequality (Eq. VII.1) [22] as [m − kσ, m + kσ]. For a chosen k, value 1/k2 gives
the fraction of the values that can lie outside of the interval [mA− kσA, mA + kσA].
Hence, 1− (1/k2) gives the fraction of values that lie within the stated interval, and
(1− (1/k2)) ∗ 100 gives the percentage.

P (| XA −mA |> kσA) <
1
k2 (VII.1)

Based on the evaluation of different k values, the experiments in the current study
use k = 6 or k = 10, which implies that a minimum of 97.2% or 99% of the data
points lie within the interval [mA − kσA, mA + kσA], respectively. The value of
k is flexible and can be determined based on the requirements of the use case or
application where the algorithm is used. As the value of k increases, the model be-
comes more generalized and categorizes more data points into the cluster. Therefore,
for sensitive applications where it is desired to have fewer false positives, a lower
k value is preferred. To assign a data point to a cluster, initially, the closest cluster
to the data point is identified, then if the data point is within the cluster boundary,
it is categorized into that cluster. If the aforementioned condition is not satisfied,
the data point is categorized as being non-located (given label −1) in the considered
clustering solution.

3.2 Range-based Distance Measure
The range-based distance measure originally introduced in [3] is inspired by the work
that studies how the overlap of the interval alternatives’ evaluations can be used to
express valued preferences among the alternatives [23]. The work [23] proposes a
metric for the comparison of information available as a form of intervals similar to
interval decision-making. The range-based distance measure is used to determine
the closeness between two clusters. It is defined by Eq. VII.2, where A and B are
two clusters. In this equation, each cluster, e.g., A, is represented by three entities,
denoted by lA, hA, and mA, of its lower boundary, higher boundary, and mean value
vectors, respectively. Notice that d(., .) is the Euclidean distance between two data
vectors.

211

R(A, B) = d(mA, mB)
d(lA, mA) + d(mB, hB)

(VII.2)

Figure 1 illustrates the degree of cluster overlap in a 2D space for different possible
ranges of range-based distance measure. Values closer to zero imply that the clusters
are similar to each other. The further away from zero, the more distinct they are. For
example, one can notice in Figure 1a that the distance between their mean vectors is
smaller than the sum of the distance between the mean vector and the lower boundary
vector of the first cluster and the distance between the mean vector and the higher
boundary vector of the second cluster (i.e., d(mA, mB) < d(lA, mA) + d(mB, hB)).
The latter implies to merge the two clusters since they are significantly overlapping,
i.e., R(A, B) < T , while in Figure 1c d(mA, mB) ≥ d(lA, mA) + d(mB, hB), i.e.,
evidently the overlap between the two clusters is not significant to merge them.

hA

hB

lA

lB

mA

mB

(a)

hA
hB

lAlB

mA

mB

(b)

hA

hB

lA

lB

mA

mB

(c)

Figure 1: Visualisation of three different scenarios illustrating the calculation of range-based distance metric
in 2D space with respect to a specific threshold, T , expressing clusters closeness: (a) R(A, B) < T , i.e., the
clusters significantly overlap with each other, and therefore, they are merged; (b) d(mA, mB) = 0, i.e., one
cluster is a subset of the other cluster, and thus they are merged to form a new cluster; (c) R(A, B) ≥ T , i.e.,
the clusters do not significantly overlap with each other, and therefore they are not merged.

212

3.3 DIBCA++
DIBCA algorithm is initially proposed in [3]. In this work, the algorithm is optimized
to be robust to outliers and is evaluated in more experimental scenarios. The core al-
gorithm of DIBCA++ consists of three main modules: Domain Correlation, Domain
Integration, and Domain Adaptation, which are elaborated on in this section. The
module structure of DIBCA++ is a novelty that is not presented in the original work.
The clear discrimination among the main phases of the algorithm and modularization
of them can be considered an improvement in comparison with DIBCA. In the latter,
those phases are not explicitly outlined and defined in separate algorithms, except
for the final integration of the two domain models. In addition to this, the three main
modules of DIBCA++ are designed to be robust to outliers.

The main improvements between DIBCA and DIBCA++ can be highlighted as
follows:

1. DIBCA uses the low and high attribute value vectors as cluster representatives,
i.e., the vectors composing the least and highest values of each attribute of the
cluster. These value vectors are also sensitive to outliers. Whereas DIBCA++
uses the mean, standard deviation, and size of the clusters as representatives,
thus also making it robust to outliers.

2. DIBCA initially calculates the mean of each of the clusters of source and target
domain using its two representatives, the low and high attribute value vectors.
DIBCA++ on the other hand, uses one of its cluster representatives (mean)
directly. It can be noted that themean calculated in DIBCA is just an average of
the low and high attribute vectors, whereas DIBCA++ uses the mean obtained
based on all the data points of the cluster.

3. As the cluster representatives of DIBCA++ are different from those of DIBCA,
the integration process done to obtain them for the new integrated clusters
varies in both algorithms. The Domain Integration module of DIBCA++ uses
the mean, standard deviation, and size of clusters to be integrated to obtain
the new mean, standard deviation, and size of the newly integrated cluster.
Whereas in DIBCA, the min and max values for each attribute are obtained
from the union of all the cluster representatives that need to be integrated to
form the new low and high attribute value vectors.

4. DIBCA++ is clearly divided into three main modules, which help in the easy
adaptation of the algorithm to new scenarios by replacing some modules with
new updated/optimized implementations. In DIBCA, these are not clearly dis-
tinguished; only the cross-labeling (part of the Domain Correlation module
used in DIBCA++) and the integration phases (Domain Integration module in
DIBCA++) are discussed separately.

213

Domain Correlation
The domain correlation module is used to identify the correlations between the clus-
ters of the source and target models. This is done in two steps: 1) identifying similar
clusters across the domains using cross-labeling, and 2) using the range-based dis-
tance measure, Eq. VII.2, to find the correlation between similar clusters. In the
cross-labeling phase, the source cluster representatives (mean value vector of each
cluster) are labeled using the target clustering model, and vice versa, i.e., the target
cluster representatives are labeled by the source clustering model. As the general
use of the labeling function of a clustering algorithm is to determine the appropriate
cluster to which the considered data point belongs, this step helps identify similar
clusters in the two domains.

After the cross-labeling step, the mapping (similarity) between the source and
target clusters can be categorized into four types: (i) mapping is in both directions,
(ii) mapping from source to target (source representatives are labeled using target
model), (iii) mapping from target to source (target representatives are labeled using
source model), and (iv) no mapping. Clusters in case (i) are identified to be strongly
correlated to each other as the similarity is identified in both directions. The similar-
ity obtained in case (ii) is ignored as the mapping is done based on the target model,
which is assumed to have less knowledge than the source model; these clusters re-
main as they are if no other mapping exists. The range-based correlation metric (see
Section 3.2) is used to determine the correlation for clusters falling into the case (iii).
Clusters in case (iv) are left as they are as these are not identified as similar to any
other cluster in the other domain.

Domain Integration
The domain integration module is applied to produce the overall integrated model
capturing the specific characteristics of the two domains. In this module, the cluster
pairs, among which the correlations are identified from the previous step (the cor-
relation module), are integrated (new mean, standard deviation, and cluster size are
obtained for the integrated cluster). These are correlations in case (i), that is, when
similarity is identified in both directions and filtered out pairs from case (iii) where
range-based distance is less than the chosen threshold (T = 0.45). The threshold of
0.45 is chosen to ensure that the integrated clusters are not too far away from each
other. It can be noted that the lower the threshold, the more strict the cluster corre-
lation requirements. If the threshold is set to 0, only clusters with overlapping mean
vectors are merged in the integration phase. As a result of the integration of the clus-
ters based on the identified correlations, a clustering model is obtained, referred to
as the integrated model, capturing the knowledge from both domains. The integrated
clusters presenting knowledge of both domains are referred to as common clusters,
and the rest containing knowledge of only a single domain are referred to as private
clusters of the respective domain. The clustering solution composed of common and
private clusters from both domains is referred to as an integrated clustering solution.

214

SD

TD

SM

TM

Domain
Correlation

&
Integration

IM

ASM

ATM

Learning
Algorithm

Learning
Algorithm

Figure 2: High-level overview of building integrated and adapted models when data from two different do-
mains are available. SD, TD, SM, TM, IM, ASM, and ATM stand for Source Data, Target Data, Source Model,
Target Model, Integrated Model, Adapted Source Model, and Adapted Target Model, respectively.

Domain Adaptation
The domain adaptation module uses the composable nature of the overall integrated
clustering model to generate two adapted private domain models, one per domain.
Each model adapts to the characteristics of its own domain but, at the same time,
reflects the identified commonality between the two domains. These models are
referred to as adapted models (e.g., source-adapted model and target-adapted model).
The adapted models contain the domain-specific private clusters and the common
clusters.

A high-level overview of the complete process of integrating knowledge from
two different domains and generating both integrated and adapted models is pre-
sented in Figure 2. Pseudo-code presenting the overview of DIBCA++ is presented
in Algorithm VII.3.

3.4 Learning Algorithm
As stated before, a clustering algorithm is required to be used in combination with
DIBCA++. The algorithm introduced in [21] is improved to be robust to outliers and
is proposed to be used in the current study.

The major improvements that are worth to be mentioned are as follows:

1. Instead of the low and high attribute value vectors (composed of the least and
highest values of each attribute of the cluster), the modified version of the

215

algorithm uses the mean, standard deviation, and size of the cluster as repre-
sentatives.

2. Previously, the cluster boundaries were defined by the low and high value vec-
tors, and the cluster’s center (mean or representative) is obtained by calculating
the mean of these two vectors. This is modified such that the mean vector ob-
tained using all the data points is used as the cluster representative, and the
cluster boundaries are obtained by Chebyshev’s inequality using the mean and
standard deviation of the clusters.

3. The mean vector obtained by using all the cluster data points is used to identify
the closest cluster to the data point that needs to be assigned to a cluster. Pre-
viously, the mean of low and high value vectors is used for the same purpose.

The pseudo-code of the clustering-based prediction algorithm (learning algorithm)
used in DIBCA++ and addressing the above-listed challenges are presented in Al-
gorithms VII.1 and VII.2. Note that this algorithm can be replaced with any other
learning algorithm generating clusters represented by the mean, standard deviation,
and size of the cluster.

Algorithm VII.1 Learning Algorithm - Fitting
Input: Labeled data set D
1: for each class (cluster) in D do
2: Calculate m, σ, s.
3: Obtain cluster boundaries ([m− kσ, m + kσ]) using Chebyshev’s inequality.
4: end for
Output: Representatives (m, σ, s) and Boundaries [m− kσ, m + kσ] =0

Algorithm VII.2 Learning Algorithm - Predict
Input: List of all cluster boundaries [m−kσ, m + kσ] and mean vectors (m), data point (d)
1: Identify the closest mean vector to d.
2: if all the feature values of d are within the cluster boundary of the selected cluster then
3: Assign to the cluster.
4: else
5: Assign -1.
6: end if
Output: Return the label for the data point.

3.5 Computational Complexity
The proposed algorithm is designed to be resource-efficient and operates using the
cluster representatives of mean, standard deviation, and cluster size. In this sec-

216

Algorithm VII.3 DIBCA++ Algorithm
Input: Clustering models C1 (source model) and C2 (target model) with cluster representa-

tives obtained using Alg. VII.1.
1: Label mC1

i
, (i = 1, . . . , n) using C2 (Alg. VII.2)

2: Label mC2
i
, (i = 1, . . . , o) using C1 (Alg. VII.2)

3: if (mC1
i
∈ C2

i) ∧ (mC2
i
∈ C1

i) then
4: Correlation(C2

i , C1
i) = 0

5: end if
6: for each C1

i ∈ C1 do
7: for each C2

i ∈ C2 do
8: if (mC2

i
∈ C1

i) ∧ (Correlation(C2
i , C1

i) < T = 0.45) (Using Eq. VII.2) then
9: ClusterList.add(C2

i)
10: end if
11: end for
12: if ClusterList ̸= ∅ then
13: Integration(C1

i , ClusterList), calculate new m, σ, s
14: Common cluster of C1 and C2 is obtained.
15: end if
16: end for
17: Clusters not integrated are private in their respective domains.

tion, the computational complexity of the main parts of the DIBCA++ algorithm
is discussed. The complexity of the Fitting (Algorithm VII.1) and Predict (Algo-
rithmVII.2) parts of the learning algorithm can be approximated toO(nc) andO(nd),
respectively, where nc is the number of clusters or groups in the clustering solution
and nd is the number of data points in the test set. As stated before, it can be noted
that the used learning algorithm, can be replaced with other suitable learning algo-
rithms, and the computational complexity of this part varies based on the algorithm
chosen.

The computational complexity of the correlation module of the algorithm can
be approximated to O(no), where n and o are the numbers of clusters in the source
and target domains, respectively. The computational complexity of the integration
phase can be approximated to O(ncorr), where ncorr is the number of the identified
correlations between the source and target domain. In conclusion, the computational
complexity of DIBCA++ is similar to that of the initial DIBCA [3].

3.6 Algorithm Explainability
In this section, we discuss the DIBCA++ algorithm with respect to its explainability
characteristics. Explainable Artificial Intelligence, also referred to as XAI in the liter-
ature, is a field stating the importance and necessity of Artificial Intelligence (AI) and
Machine Learning (ML) models to be explainable and transparent. Explaining the

217

results of AI algorithms is important for their trustworthiness and acceptance, espe-
cially if these algorithms are used to make essential decisions in fields like medicine,
law, etc. Explainability increases AI acceptance even in areas such as recommender
systems where incorrect predictions have less impact on users [24].

On a broader level, explainable AI can be grouped into two categories, post-hoc
and ante-hoc [25]. In post-hoc methods, the algorithm itself is not explainable. The
algorithm’s results are analyzed using various techniques like plots, test cases, etc.,
to make them explainable. Many new algorithms are also being proposed to be used
as an add-on to help explain the results of the main algorithm. On the contrary, ante-
hoc algorithms are inherently explainable and inbuilt with the explainability factors
from the design stage.

The proposed DIBCA++ algorithm is an ante-hoc algorithm, as different steps of
the algorithm can be analyzed and interpreted. Following are a few examples. In the
cross-labeling phase, we are able to initially identify the similarity of clusters from
the two different domains. Let us assume that the clustering solutions in the source
and target domains are called C1 and C2, respectively. When a cluster representative
in C1 is labeled as one of the clusters in C2, it implies the clusters have a resem-
blance, as the representative of the cluster in C1 is within the range of the boundaries
of the cluster in C2, and vice-versa which is logical. The correlation between two
clusters is further investigated by the various checks done in the algorithm. These
checks are transparent, enabling an easy understanding of the final result, i.e., if the
clusters should be merged (common clusters) or retained as they are (private clusters
in respective domains).

In addition to the above, the output from the different steps of the algorithm
can be easily visualized to support further the interpretation and understanding of
the obtained final results. Overall, the final results of the algorithm execution are
understandable even by humans without any expertise in the field. These results are
unique and can also be traced back for reasoning if required.

3.7 Algorithm Applicability
The DIBCA++ proposes a generic integration procedure of two clustering solutions
based on cluster or class data models, in which each cluster or class is presented by
its boundaries based on Chebyshev’s inequality. Only the cluster’s mean, standard
deviation, and size are used as representatives. The algorithm is applicable to domain
adaptation problems in a variety of ML scenarios, namely supervised, unsupervised,
and semi-supervised learning scenarios. For example, in an unsupervised scenario,
both domain models are presented by clustering solutions in which each cluster mod-
els a specific behavioral scenario of the monitored phenomenon. In that way, the
integrated model built by the DIBCA++ will be enriched with knowledge about the
phenomenon behavior from both domains by identifying and refining scenarios com-

218

mon for both domains and preserving those unique for each separate domain. Such a
domain adaptation model can be suitable for outlier detection tasks, where the moni-
tored phenomenon (e.g., a process or a system) can be described by a set of clusters
presenting its ordinary behavioral patterns. Everything that does not fit into any clus-
ter will be interpreted as deviating behavior. Hence, the DIBCA++ can be applied to
adapt the outlier detection model to new environmental or contextual conditions.

In the case of a supervised learning setup, both domain data models consist of
labeled classes, i.e., eachmodel presents the concepts specific to each domain, respec-
tively. As a result of the integration procedure, the overall model will learn which
concepts are common for both domains and also identify the private ones for each
domain. This newly gained information will contribute to a better understanding of
the monitored phenomenon and can eventually be used for further improvement of
domain models. For example, domain private concepts can be extracted from the in-
tegrated datamodel. This property of the DIBCA++makes it applicable, for example,
for the customization of patient/user models in smart monitoring applications.

Finally, theDIBCA++ can be used in partially (semi-)supervised scenarios, where
only the source model is based on labeled data, while the target model contains just
non-labeled clusters. One use case of this scenario is the automatic data labeling
task. The domain correlation procedure of the algorithm can be used to label those
target concepts that have been identified to be common with the source model. The
potential of the proposed algorithm in labeling scenarios has already been studied
and demonstrated in the initial work on DIBCA [3].

In addition to the above-discussed ML scenarios where DIBCA++ can be used,
there are some limitations that are worth mentioning. More specifically, the learn-
ing algorithm used in the current study applies Chebyshev’s inequality to define the
cluster boundaries. Even though this inequality holds true for most probability dis-
tributions, there might be cases when this is invalid. For example, if we consider
normal distribution, which is one of the most common probability distributions, the
majority (approx. 99.7%) of the data points lie within three times the standard de-
viation from the mean. Whereas for Chebyshev’s inequality, six and ten times the
standard deviation from the mean cover approximately 92.7% and 99% of the data
points, respectively. If the data follows a normal distribution, Chebyshev’s inequality
might produce clusters with higher boundaries than required; therefore, more atten-
tion should be paid to such cases. This can lead to mislabeling of data, especially
when the clusters are closer to each other. Moreover, the learning algorithm used
in conjunction with DIBCA++ should be able to represent the clusters by the mean,
standard deviation, and size of the cluster.

219

4 Data Sets
Two different data sets, one from the smart logistics use case and the other from the
HAR data set, are used in the study.

Data from the smart logistics use case is provided by our industry partner. The
Global Navigation Satellite System (GNSS) is used by the trackers to report their
location. These tracking devices have limited memory and computational capacity,
which needs to be considered during their operation. Trying to update the location
continuously requires a significant amount of energy, which is wasted if the GNSS
signal is not strong or unavailable when accessed. This motivates the need to detect
and optimize when the tracker should try to access the GNSS location. The used
data set contains information about five tracking devices. For each tracking device,
signals from the Long Term Evolution (LTE) base stations, the number of available
cells with radio signals, geographical location, etc., are collected.

DaLiAc (Daily Life Activities), a HAR data set generated during the study [26],
is used to evaluate the algorithm’s potential in the domain adaptation task of recogniz-
ing and mapping similar activities from different users. HAR of different users can
be categorized as a domain adaptation task as each user performs an activity in differ-
ent ways, leading to having data with different distributions. Building new clustering
solutions covering all the activities considered for each user requires a large amount
of data, which is difficult to obtain. Domain adaptation is useful in such situations
where knowledge from one user model is used for building HAR models for others.
The data set contains information about 19 participants (11 male, 8 female) aged be-
tween 18 and 55 performing 13 daily activities. Data consists of the accelerometer
and gyroscope readings collected using four sensors placed on the right hip, chest,
right wrist, and left ankle of each participant.

5 Evaluation Measures
For the smart logistics use case, Adjusted Mutual Information is used, whereas, for
the DaLiAc data set, two different extrinsic cluster evaluation metrics, namely Ad-
justed Rand Index and Adjusted Mutual Information are considered. The imple-
mented versions of the evaluation metrics by scikit-learn [27] are used.

5.1 Adjusted Rand Index
Adjusted Rand Index (ARI) [28] is the adjusted for chance version of the Rand Index
(RI) [29]. RI calculates the similarity between two clustering solutions by counting
the number of pairs of samples that are categorized as the same or different in the
predicted clustering as opposed to the ground truth. ARI is corrected/adjusted for a
chance so that random results produce a score close to 0. ARI is then obtained using

220

the formula stated in Eq. VII.3.

ARI = RI − ExpectedRI

max(RI)− ExpectedRI
, (VII.3)

where RI for samples i and j is
∑

ij

(nij

2
)
,

max(RI) = 1
2

∑
i

(
ai

2

)
+
∑

j

(
bj

2

) , and
ExpectedRI =

∑
i

(ai
2
)∑

j

(bj

2
)(n

2
) , where n is the number of elements, ai and bj are

the sum of the pair of samples i and j, respectively.

5.2 Adjusted Mutual Information
Mutual Information (MI) is used to compare two clustering solutions. The obtained
value is, however, higher if the number of clusters is high, whether more informa-
tion is actually shared between the clusters or not. Adjusted Mutual Information
(AMI) [30, 31] is a corrected for chance version of MI. Eq. VII.4 is used to calculate
AMI [27].

AMI(U, V) = [MI − E(MI)]
[avg(H(U), H(V))− E(MI)] (VII.4)

In Eq. VII.4, MI represents MI(U, V), where U and V are the two clustering so-
lutions, H(.) is the entropy of the considered clustering solution (either U or V in
this case), E(MI(U, V)) is the expected mutual information between two random
clustering solutions U and V .

6 Experiments
The section initially presents an overview of the preprocessing steps done on each
of the considered data sets. This is followed by explaining the different experiments
conducted in the study 1.

6.1 Data Pre-processing
Before conducting the experiments, a few steps of data processing are done on the
data sets to make them ready to be used in the experiments.

1Access to the repository with experiments conducted on the public data set (DaLiAc, HAR) can
be provided upon request.

221

For the first set of experiments, we used the data set from a smart logistics use
case provided by one of our industrial partners. Data used in this study is collected
from five different tracker devices. Statistical values of the cell signals, i.e., mean,
standard deviation, min, and max, are obtained for each instance, which along with
the signal strengths, are used as a feature set.

The second set of experiments is conducted on the DaLiAc data set initially con-
taining 24 attributes, with six attributes (3D accelerometer and gyroscope readings)
obtained from each sensor placed on different body locations. Each of the 3D values
is aggregated using a =

√
x2 + y2 + z2 to obtain one value like in [32, 33], thus

giving in a total of eight attributes.
To obtain stable results, each experiment is conducted three and five times on

each data set for smart logistics and HAR use cases, respectively. Since the smart
logistics and DaLiAc data sets contain time series data, TimeSeriesSplit from the
scikit-learn library [27] is used to split the data into five different folds of train and
test data sets. Only three folds are used for the smart logistics use case, as low per-
formance was observed in the initial folds where less data is used. Note that training
data is incrementally added to each fold in TimeSeriesSplit. In the next step, data
from each fold is standardized using z-score. This is done using the StandardScaler
module from scikit-learn. Data standardization of both source and target data is done
using the scale obtained from the data of the source domain. Mathematically, it can
be represented as z = (x−µ)/σ, where x is the data point that needs to be standard-
ized, µ is the mean of the source training data, and σ is the standard deviation of the
source training data. Unless explicitly stated, all the results presented are aggregated
evaluations obtained from experiments conducted on different folds (three for smart
logistics and five for HAR data sets) of the time series cross-validation performed.

6.2 Experiments on Smart Logistics Use Case
We study and analyze the effect of similarity between the two domains to that of the
performance of DIBCA++ with the experiments discussed in this section. The simi-
larity between different domains (data from different devices) is evaluated using the
Optimal Transportation Dataset Distance (OTDD) [34]. The OTDD is based on opti-
mal transport and also incorporates label information in the calculation. The OTDD
is designed to evaluate the transferability of ML models between data sets, which
is useful information to have for tasks like transfer learning and domain adaptation.
Figure 3 presents a heat map showcasing the data set distances between different
pairs of devices. When calculating the OTDD, a sampled data set of 7, 500 instanced
with random seed ’0’ is used. Values closer to zero represent that the data sets are
similar to each other. It is also interesting to observe that the results of similarity
based on OTDD are comparable to the results obtained in [21], where the similarity
between the same data sets is calculated based on the RI scores.

222

D1 D2 D3 D4 D5

D
1

D
2

D
3

D
4

D
5

735.81

546.33 189.74

759.76 1825.98 1786.71

474.77 336.93 335.44 1162.82

200

400

600

800

1000

1200

1400

1600

1800

Figure 3: Heat-map presenting the similarity between data obtained from different devices (D) based on the
Optimal Transport Dataset Distance (OTDD). Low values represent that the data sets are similar to each other.

Two experiments, A1 and A2, are conducted to understand and analyze how the
similarity of the data sets influences the performance of the different clustering mod-
els produced by DIBCA++. Evaluation measure AMI (see Section 5) is used to show-
case the performance of the clustering solutions obtained for both A1 and A2. Note
that we have also done an evaluation using ARI, but since there is no significant
difference in the results generated by both evaluation metrics on the various models
produced by DIBCA++, only AMI results are reported in the paper. In addition, the
current work treats the GNSS activation problem differently from the setting applied
in [3]. Namely, in the previous study, we have considered the prediction of the avail-
ability of GPS signal as a one-class classification problem, i.e., a version of the ISM
algorithm published in [21] is applied to the GPS annotated data to learn the normal
system behavior and then recognizes everything different from it, such as when there
is no GPS signal coverage. In the current study, we use the data from both classes
and model each class by seven categories. Each category is presented by a unique
cluster containing all the data points associated with the availability of the number
of cells with signal strengths (ranging from 1 to 7 available cells based on the LTE
coverage). As a result, the data will be presented in 14 categories in total. In both
experiments A1 and A2, these 14 categories are used as true labels, based on which
the initial clustering solutions are obtained using the learning algorithm (Section 3.4,
Algorithms VII.1 and VII.2). Only 70% of the training data of the target is used for
training in both experiments (A1 and A2). This is done to generate a scenario where
sufficient target data is unavailable.

In experiment A1, all ten possible combinations of two-pair devices are consid-
ered to perform the experiments. For each pair of devices, the device with a higher
number of instances is considered as the source (as more data implies more knowl-
edge) domain, and the one with less data is the target domain. Figure 4 presents the

223

results obtained.

0,65
0,67
0,69
0,71
0,73
0,75
0,77
0,79
0,81
0,83
0,85

SM TM ASM IM SM TM ATM IM

SOURCE DATA TARGET DATA

D1 - Source

D1 D2 D1 D3 D1 D4 D1 D5

(a)

0,65
0,67
0,69
0,71
0,73
0,75
0,77
0,79
0,81
0,83
0,85

SM TM ASM IM SM TM ATM IM

SOURCE DATA TARGET DATA

D2 - Source

D2 D3 D2 D4 D2 D5

(b)

0,65
0,67
0,69
0,71
0,73
0,75
0,77
0,79
0,81
0,83
0,85

SM TM ASM IM SM TM ATM IM

SOURCE DATA TARGET DATA

D4 - Source

D4 D3

(c)

0,65
0,67
0,69
0,71
0,73
0,75
0,77
0,79
0,81
0,83
0,85

SM TM ASM IM SM TM ATM IM

SOURCE DATA TARGET DATA

D5 - Source

D5 D3 D5 D4

(d)

Figure 4: Experiment A1-DIBCA++: Visualisation and comparison of the performance (all the values are aver-
age of 3 folds) of the DIBCA++ models for different combinations of source and target data sets with respect
to AMI. Each plot depicts the performance of the models when a different device is in the role of the source.

In experiment A2, the closest and the distant pair of devices based on the similar-
ity calculated are considered for comparison. Unlike A1, in this experiment, for each
pair of devices, both are alternatively considered as the source and the other as the
target, thus giving 4 different combinations of source and target (2 for each closest
and distant pair). The results of this experiment are presented in Figure 5.

6.3 Experiments on HAR Use Case
The potential of the DIBCA++ algorithm in the adaptation and personalization of
users’ human activity clustering models is showcased in this experiment. Since the
number of ways of selecting source and target from 19 participants would result in
too many combinations, 4 male (users 8, 11, 12, and 15) and 4 female (users 10, 13,
14, 18), users are randomly chosen from the available participants on which the ex-
periments are conducted. Since men and women have different physical capabilities
which can impact the way they perform the activities, we chose to perform the exper-
iments on men and women separately. Further information about the users used in
the experiments of this study is stated in Table 2.

224

0,65
0,67
0,69
0,71
0,73
0,75
0,77
0,79
0,81
0,83
0,85

SM TM ASM IM SM TM ATM IM

SOURCE DATA TARGET DATA

Performance of closest pair

D2 D3 D3 D2

(a)

0,65
0,67
0,69
0,71
0,73
0,75
0,77
0,79
0,81
0,83
0,85

SM TM ASM IM SM TM ATM IM

SOURCE DATA TARGET DATA

Performance of distant pair

D2 D4 D4 D2

(b)

Figure 5: Experiment A2-DIBCA++: Performance comparison of the closet and distinct pairs of devices based
on the similarity of the data sets. The notation Dx-Dy represents that Dx is the source and Dy is the target. Each
plot presents the performance of different models produced by DIBCA++ on (a) D2-D3 and D3-D2, closest pair
based on similarity; (b) D2-D4 and D4-D2, distinct pair based on similarity.

Table 2: Information about users used in the experiments B1 and B2

User Sex age Instances Height Weight Handedness
U8 m 29 230,381 180 90 right
U10 f 27 240,494 169 59 right
U11 m 27 239,020 178 72 right
U12 m 18 253,317 175 70 right
U13 f 21 245,041 177 86 right
U14 f 22 243,036 180 55 left
U15 m 27 241,024 196 95 right
U18 f 24 228,697 158 54 right

The considered users can be grouped into 12 pairs such that one user’s activities
are considered as a source domain and the other as a target domain (6 male pairs
and 6 female pairs). Two different types of experiments (denoted as B1 and B2) are
conducted.

Experiment B1 is conducted to showcase the potential of the algorithm in domain
adaptation tasks. In this experiment, for each pair of users, the user with a higher
number of instances is considered as the source domain, and the other user is the
target. Initial clustering in each of the domains is done using the true labels, and
the learning algorithm stated in Section 3.4 (see Algorithm VII.1). This, along with
Algorithm VII.2, is used to assign new data points to one of the clusters. The results
of this experiment are presented in Tables 3 and 4 with regard to ARI and AMI,
respectively.

In experiment B2, for each pair of users, data from both source and target domains
are combined to obtain one dataset. A clustering model on the whole combined
data is built and evaluated using the learning algorithm (Algorithms VII.1 and VII.2).
Experimental results of B2 are presented in Table 5. Results of Experiment B2 when
compared with B1 (SD-ASM, SD-IM, TD-ATM, and TD-IM columns of Tables 3
and 4), can be used to understand and demonstrate the importance of personalized
user models.

225

Table 3: Experiment B1-DIBCA++: Results obtained on DaLiAc data set with respect to Adjusted Rand Index
using DIBCA++; SD- Source Data, TD- Target Data, SM- SourceModel, TM- Target Model, ASM-Adapted Source
Model, ATM- Adapted Target Model, IM- Integrated Model. Bold font in black represents the best model in
the row, cyan color represents the better performance of IM in comparison to the corresponding SM or TM.
Blue and red represent the better performance of ASM over SM and ATM over TM, respectively.

SD TD SD-SM SD-TM SD-ASM SD-IM TD-SM TD-TM TD-ATM TD-IM
U10 U18 0.248 0.222 0.271 0.271 0.201 0.261 0.248 0.233
U11 U8 0.280 0.230 0.296 0.292 0.230 0.272 0.302 0.256
U12 U8 0.299 0.236 0.288 0.288 0.236 0.260 0.261 0.257
U12 U11 0.299 0.210 0.284 0.267 0.220 0.276 0.292 0.280
U12 U15 0.299 0.220 0.303 0.301 0.250 0.264 0.292 0.282
U13 U10 0.289 0.196 0.274 0.274 0.235 0.246 0.237 0.251
U13 U14 0.289 0.255 0.297 0.296 0.250 0.283 0.262 0.246
U13 U18 0.289 0.232 0.278 0.278 0.266 0.265 0.272 0.264
U14 U10 0.300 0.186 0.287 0.279 0.195 0.262 0.273 0.282
U14 U18 0.300 0.227 0.278 0.271 0.252 0.277 0.293 0.268
U15 U8 0.274 0.227 0.277 0.277 0.215 0.291 0.290 0.256
U15 U11 0.274 0.164 0.270 0.267 0.245 0.275 0.285 0.259

Table 4: Experiment B1-DIBCA++: Results obtained on DaLiAc data set with respect to Adjusted Mutual Infor-
mation using DIBCA++; SD- Source Data, TD- Target Data, SM- SourceModel, TM- Target Model, ASM-Adapted
Source Model, ATM- Adapted Target Model, IM- Integrated Model. Bold font represents the best model in the
row, cyan color represents the better performance of IM in comparison to the corresponding SM or TM. Blue
and red represent the better performance of ASM over SM and ATM over TM, respectively.

SD TD SD-SM SD-TM SD-ASM SD-IM TD-SM TD-TM TD-ATM TD-IM
U10 U18 0.441 0.421 0.451 0.451 0.400 0.433 0.434 0.417
U11 U8 0.463 0.406 0.474 0.472 0.403 0.445 0.452 0.439
U12 U8 0.459 0.426 0.447 0.447 0.414 0.432 0.433 0.430
U12 U11 0.459 0.391 0.450 0.445 0.386 0.460 0.471 0.459
U12 U15 0.459 0.407 0.461 0.463 0.444 0.475 0.473 0.467
U13 U10 0.441 0.387 0.443 0.443 0.435 0.444 0.428 0.440
U13 U14 0.441 0.405 0.441 0.440 0.446 0.457 0.443 0.448
U13 U18 0.441 0.413 0.441 0.441 0.435 0.435 0.438 0.436
U14 U10 0.475 0.392 0.464 0.467 0.387 0.459 0.459 0.459
U14 U18 0.475 0.443 0.467 0.475 0.431 0.449 0.458 0.452
U15 U8 0.480 0.425 0.467 0.466 0.417 0.463 0.456 0.446
U15 U11 0.480 0.377 0.477 0.476 0.432 0.466 0.454 0.444

Table 5: Experiment B2: Results obtained on DaLiAc data set when two data sets are combined. Red and
blue represent the best and worst performance values, respectively.

Users ARI AMI
U10 + U18 0.223 0.404
U11 + U8 0.246 0.410
U12 + U8 0.276 0.430
U12 + U11 0.278 0.436
U12 + U15 0.286 0.440
U13 + U10 0.237 0.401
U13 + U14 0.277 0.428
U13 + U18 0.250 0.405
U14 + U10 0.262 0.434
U14 + U18 0.255 0.417
U15 + U8 0.231 0.404
U15 + U11 0.262 0.434

6.4 Experiments with DIBCA
The performance of DIBCA++ is also compared with its predecessor, i.e., DIBCA.
For this purpose, two experimental scenarios, A1 and B1, are exactly replicated on
the smart logistics and HAR use cases using DIBCA. Tables 6 and 7 present the
experimental results of A1 on smart logistics data set with regard to AMI using both

226

Table 6: Experiment A1-DIBCA: Results obtained on smart logistics data set with respect to Adjusted Mutual In-
formation using DIBCA; SD- Source Data, TD- Target Data, SM- SourceModel, TM- Target Model, ASM-Adapted
Source Model, ATM- Adapted Target Model, IM- Integrated Model.

SD TD SD-SM SD-TM SD-ASM SD-IM TD-SM TD-TM TD-ATM TD-IM
D1 D2 0.792 0.810 0.787 0.787 0.755 0.764 0.760 0.757
D1 D3 0.792 0.806 0.791 0.791 0.757 0.760 0.762 0.760
D1 D4 0.792 0.789 0.788 0.788 0.778 0.766 0.811 0.787
D1 D5 0.792 0.791 0.787 0.787 0.764 0.772 0.764 0.763
D2 D3 0.768 0.756 0.768 0.768 0.781 0.763 0.780 0.780
D2 D4 0.768 0.746 0.771 0.771 0.786 0.766 0.791 0.789
D2 D5 0.768 0.742 0.763 0.763 0.785 0.772 0.779 0.779
D4 D3 0.784 0.784 0.792 0.792 0.738 0.762 0.775 0.775
D5 D3 0.763 0.766 0.775 0.775 0.760 0.759 0.766 0.766
D5 D4 0.763 0.780 0.753 0.753 0.787 0.767 0.794 0.780

Table 7: Experiment A1-DIBCA++: Results obtained on smart logistics data set with respect to Adjusted Mutual
Information using DIBCA++; SD- Source Data, TD- Target Data, SM- Source Model, TM- Target Model, ASM-
Adapted Source Model, ATM- Adapted Target Model, IM- Integrated Model.

SD TD SD-SM SD-TM SD-ASM SD-IM TD-SM TD-TM TD-ATM TD-IM
D1 D2 0.826 0.815 0.821 0.794 0.798 0.775 0.784 0.761
D1 D3 0.826 0.822 0.824 0.799 0.792 0.791 0.797 0.757
D1 D4 0.826 0.822 0.829 0.803 0.798 0.793 0.793 0.772
D1 D5 0.826 0.822 0.825 0.795 0.801 0.804 0.807 0.774
D2 D3 0.784 0.793 0.790 0.767 0.791 0.791 0.795 0.769
D2 D4 0.784 0.789 0.786 0.764 0.794 0.793 0.797 0.781
D2 D5 0.784 0.788 0.791 0.763 0.785 0.804 0.783 0.758
D4 D3 0.797 0.797 0.798 0.784 0.767 0.790 0.786 0.765
D5 D3 0.784 0.807 0.791 0.774 0.790 0.791 0.797 0.776
D5 D4 0.784 0.786 0.786 0.760 0.792 0.792 0.799 0.773

Table 8: Experiment B1-DIBCA: Results obtained on DaLiAc data set with respect to Adjusted Rand Index using
DIBCA; SD- Source Data, TD- Target Data, SM- Source Model, TM- Target Model, ASM- Adapted Source Model,
ATM- Adapted Target Model, IM- Integrated Model.

SD TD SD-SM SD-TM SD-ASM SD-IM TD-SM TD-TM TD-ATM TD-IM
U10 U18 0.107 0.064 0.109 0.090 -0.002 0.070 0.080 -0.002
U11 U8 0.030 0.103 0.027 0.026 -0.000 0.134 0.131 -0.000
U12 U8 0.047 0.079 0.046 0.048 0.021 0.135 0.129 0.028
U12 U11 0.047 0.001 0.050 0.027 -0.007 0.030 0.036 0.013
U12 U15 0.047 0.049 0.047 0.051 -0.006 0.101 0.124 0.046
U13 U10 0.103 0.003 0.083 0.001 0.072 0.118 0.101 0.097
U13 U14 0.103 0.039 0.104 0.033 0.037 0.089 0.091 0.091
U13 U18 0.103 0.070 0.118 0.105 0.099 0.072 0.109 0.111
U14 U10 0.091 0.004 0.087 0.093 0.041 0.115 0.178 0.072
U14 U18 0.091 0.079 0.091 0.092 0.038 0.074 0.072 0.041
U15 U8 0.097 0.130 0.097 0.099 0.074 0.136 0.145 0.080
U15 U11 0.097 -0.015 0.122 0.122 0.051 0.030 0.099 0.101

DIBCA and DIBCA++, respectively. It can be noted that the contents of Table 7
have already been presented as a figure (Figure 4), but in order to facilitate easy
comparison between DIBCA and DIBCA++, we have decided to present the results
of both the algorithms using tables. Tables 8 and 9 present the experimental results
of B1 using DIBCA on the HAR data set based on ARI and AMI, respectively.

227

Table 9: Experiment B1-DIBCA: Results obtained on DaLiAc data set with respect to Adjusted Mutual Informa-
tion using DIBCA; SD- Source Data, TD- Target Data, SM- Source Model, TM- Target Model, ASM- Adapted
Source Model, ATM- Adapted Target Model, IM- Integrated Model.

SD TD SD-SM SD-TM SD-ASM SD-IM TD-SM TD-TM TD-ATM TD-IM
U10 U18 0.353 0.263 0.351 0.330 0.111 0.292 0.286 0.122
U11 U8 0.250 0.224 0.245 0.242 0.119 0.282 0.290 0.121
U12 U8 0.262 0.208 0.251 0.258 0.175 0.282 0.285 0.195
U12 U11 0.262 0.107 0.260 0.214 0.116 0.249 0.251 0.183
U12 U15 0.262 0.233 0.256 0.273 0.110 0.322 0.333 0.221
U13 U10 0.270 0.075 0.250 0.123 0.235 0.352 0.318 0.326
U13 U14 0.270 0.168 0.270 0.206 0.156 0.304 0.295 0.310
U13 U18 0.270 0.233 0.277 0.271 0.272 0.297 0.297 0.289
U14 U10 0.321 0.065 0.300 0.292 0.201 0.351 0.395 0.244
U14 U18 0.321 0.254 0.315 0.320 0.227 0.304 0.296 0.252
U15 U8 0.317 0.282 0.318 0.319 0.291 0.285 0.300 0.300
U15 U11 0.317 0.113 0.314 0.320 0.246 0.254 0.315 0.324

7 Result Analysis and Discussion
Discussion and analysis of the experimental results are presented in this section. In
addition, the algorithm’s explainability aspect is also showcased on a few selected
instances of different experiments in Section 7.4. The abbreviations Source Data
(SD), Target Data (TD), Source Model (SM), Target Model (TM), Adapted Source
Model (ASM), Adapted Target Model (ATM), and Integrated Model (IM) are used
in this section.

7.1 Smart Logistics
A heat map with similarities calculated for each pair of different data sets is dis-
played in Figure 3. In experiment A1, the performance of the models produced by
the DIBCA++ on the different pairs of devices is analyzed in light of these calculated
similarities. Figure 4 presents the built models’ performance on different source and
target device pairs. From all the sub-figures, it can be observed that the performance
of ASM when D1 is considered as the source is higher compared to all the other
scenarios. It can be backed by the known fact that D1 contains richer data than its
counterparts. Based on the calculated similarities between pairs of devices, when D1
is selected as the source, pairs D1-D3 and D1-D5 can be considered similar, D1-D2
and D1-D4 to be distinct from each other. From Figure 4a, it can be observed that
the performance of the ASM and ATM is directly proportional to the similarity of the
data sets (i.e., higher the similarity between the two data sets (lower OTDD), higher
the performance), except for D1-D4 pair concerning ASM. Whereas for scenarios
when devices D2 and D5 act as a source (D2-D3, D2-D5, and D5-D3 are consid-
ered similar; D2-D4 and D5-D4 are distinct), as shown in Figures 4b and 4d, the
performance of ASM is directly proportional to similarity, and the performance of
ATM is inversely proportional. Since there is just one pair when D4 is the source
(Figure 4c), it is difficult to interpret how the similarity and the performance of ASM
and ATM are correlated. Overall, it is observed that the performance of the ASM

228

and ATMmodels produced by DIBCA++ performed better 70% and 80% of the time
when compared to that of SM and TM, respectively (see Figure 4 or Table 7). These
results on the studied use case show the potential of DIBCA++ to transfer knowledge
between domains for improving performance. Note that all the 3 cases (30%) when
ASM performance did not exceed the performance of SM are when D1 is considered
as the source. It could be because of the fact that the SM build using D1 is already
rich and could not gain much from the other domain.

In experiment A2, we specially inspect two pairs of devices, the closest (similar)
and the distant (dissimilar) ones; see Figures 5a and 5b, respectively. D2 and D3
are the two closest devices, and the experiments on both D2-D3 and D3-D2 pairs
show better performance of ATM than that of TM, on TD. In the case of D2-D3, the
ATM even outperforms SM on TD. So, when two devices are very similar, it does
not matter which device is in the role of the source. However, this is not observed in
the case of the two most distant devices, which are D2 and D4. The data collected
by these devices presumably cover very different GNSS coverage scenarios. The
experiments demonstrate strange behavior for D4-D2 on TD; namely, although the
performance of SM and TM, ASM on SD are comparable, this does not repeat on TD,
while in the case of D2-D4, the ATM outperforms all other models on both source
and target data. The above might be due not only to the fact that D2 and D4 have very
different data sets (the highest OTDD value) but also because D2 has much richer
data than D4. It is interesting to note that D2 has more instances in the data set than
D4.

Evidently, it can be stated that the target model acquires knowledge from the
source and improves its performance. When the knowledge in the source domain is
very similar to that in the target, that is, there is no additional knowledge to be trans-
ferred, and the benefit of creating IM or ATM is not significant. In such a scenario,
using the SM directly on the target domain data would be better. In addition to the
above, we have noticed that the performance of the adapted (source or target) model
is better than that of the integrated model in all the studied combinations, i.e., it is
always recommendable to use the customized model.

7.2 Human Activity Recognition
Tables 3 and 4 summarized the results of DIBCA++ on the DaLiAc data set in ex-
perimental scenario B1. They showcase the results of the comparison of the perfor-
mance of the three models, namely IM, ASM, and ATM, produced by the proposed
algorithm to that of the initial SM and TMmodels used on the SD and TD in terms of
ARI and AMI measures, respectively. In that way, for each of the 12 combinations of
users studied, we compare eight different scenarios for each metric, i.e., 96 different
scenarios per metric in total.

With respect to the ARI evaluation (see Table 3), one can notice that the IM

229

produces better results in comparison to the two initial SM and TM in 5 and 4 (colored
in cyan) of all the combinations, respectively. It is interesting, however, to observe
that the same number is achieved by the ASM in comparison with the SM used on
the source data (the scores in blue) while the ATM is better than the TM applied on
the target data (the scores in red) in twice more combinations, i.e., 8. Evidently, the
performance of the integrated model is further improved by building a personalized
adapted model for each domain. In addition, we can see that using the SM on the
target data (see column TD-SM) produces worse results than the initial TM as well
as than the ATM and IM. This clearly shows that our domain integration procedure
leads to richer adapted models, with benefits for both parties involved. It can also be
observed that the SD-SM scenario performs better than the rest studied in 6 different
combinations highlighted in bold black font.

The same 96 scenarios discussed above are also evaluated in terms of AMI mea-
sure, and the obtained results are presented in Table 4. These confirm once more the
findings extracted by analyzing Table 3. It can be observed that the IM has performed
better in 6 and 3 cases when compared against SM and TM on source and target data,
respectively. Similarly to the results corresponding to the ARI, we can see that ASM
performs better than SM the same number of times as IM, and ATM performs better
than TM in 5 combinations, which is almost twice the times IM performs better than
TM.

Table 5 reports the evaluation results of the clustering models built directly on
the combined data of a pair of users (domains) with respect to the two evaluation
measures, ARI and AMI (Experiment B2). This experiment showcases the need for
personalized user models for higher performance. When the results of combined
data sets of two users are compared to the scenarios where source and target domain
models are built separately (Tables 3 and 4, columns SD-SM, SD-ASM, SD-IM, TD-
TM, TD-ATM and TD-IM) drop in performance of the combined models can be
observed in most cases. The evaluation results of the scenarios where TM is used on
SD or SM on TD (columns SD-TM and TD-SM of Tables 3 and 4) are even worse,
but it is expected to have the least performance in this case as the model’s knowledge
and the data used are from different domains.

The clustering model produced on the combined data of users U12 and U15 (see
row U12+U15) outperforms all other pairs with respect to all the used measures,
while the models of U10+U18 and U13+U10 are the worst-performing ones since
they have generated the lowest results at least for a single evaluation measure. It is
interesting to notice that the best-performing pair of models is obtained from males,
as users in this pair may have performed most of the activities similarly, while the
two low-performing models are based on data from female users, which might have
occurred due to differences in how they perform the activities. It can also be observed
that the U12-U15 pair is among one of the best-performing pairs in Tables 3 and 4.

230

7.3 Comparison with DIBCA
In this sub-section, the performance of DIBCA++ is compared to DIBCA with re-
spect to the experimental scenarios A1 and B1. Tables 6 and 7 present the perfor-
mance of DIBCA and DIBCA++ in experimental setup A1 on smart logistics use
case based on AMI. It can be observed that DIBCA++ has a better performance in
82.5% of cases, and in 2.5% occasions, both algorithms performed similarly. In only
15% of the cases, DIBCA has shown better performance, and it can be noted that the
margin of difference is also very small in some of these cases.

Tables 8 and 9 present the summarised results of DIBCA on the HAR data set
with respect to ARI and AMI. On comparing these results with those obtained by
DIBCA++ (Tables 8 and 3; Tables 9 and 4), it can be clearly seen that DIBCA++
has outperformed DIBCA in all the cases to a great extent. This might be because of
more outliers recorded when the sensors capture human activities, as different people
perform the activities differently.

7.4 Explainability
In this section, we specifically study the explainability characteristics of DIBCA++.
We initially select a pair of devices from the smart logistics use case to inspect how the
correlations identified by the domain correlation module of DIBCA++ can be used
to explain the algorithm performance on the selected pair. The performance of ATM
on the D2-D5 pair is the worst one (see Figure 4 or Table 7), which has provoked
our curiosity to check out how the clusters of the D2 and D5 models are correlated
(last fold of experiment using all the data is used for illustration), see Figure 6. Inter-
estingly, there is only one mismatch, namely the connection between cluster 8 from
the D2 model and cluster 1 from the D5 model. The other connections are correct,
but they correlate only with half of the clusters; the other half will exist as private
clusters in the integrated model (IM) and their respective adapted models (ASM or
ATM). In addition, a common cluster that unites cluster 8 from D2 and clusters 1
and 8 from D5 will be created in IM, ASM, and ATM. This cluster will contain data
points from both classes, namely with and without GPS signals, which certainly will
affect the ATM performance. However, the identified connection between cluster 8
from the D2 model and cluster 1 from the D5 model can also provide us with new
information about the scenarios presented in the D2 and D5 models. This might be
a hint that the scenarios modeled by these two clusters, in fact, present a transition
between the two main classes, i.e., from GPS coverage to no GPS coverage and vice
versa.

Next, two pairs of users from the HAR use case are chosen to further analyze
and understand the results with respect to the explainability aspect of the DIBCA++.
One best-performing and one least-performing pairs are picked up from Table 5 (Ex-
periment B2) to understand how the source and target models of these pairs are inte-

231

10

0

1

2

3

4

5

6

7

8

9

11

12

10

0

1

2

3

4

5

6

7

8

9

11

12

1313

Device 2-5

GPS (1)

GPS (2)

GPS (3)

GPS (4)

GPS (5)

GPS (6)

GPS (7)

No GPS (1)

No GPS (3)

No GPS (4)

No GPS (5)

No GPS (6)

No GPS (7)

No GPS (2)

Figure 6: Visualisation of the correlations identified by the domain correlation module of the DIBCA++ on a
selected pair of devices, D2-D5, one of the pairs on which ATM has the worst performance. In the cluster label
'A(x)', A indicates whether the cluster corresponds to one of the two main classes, i.e. available GPS signal or
missing, while x ranges from 1 to 7 representing the available cells based on the LTE coverage, i.e. it denotes
a specific category (scenario) in each one of the two main classes.

grated (Experiment B1). User pairs U12-U15 and U10-U18 are chosen to be further
analyzed. Note that U10-U18 is chosen over U13-U10 as for the first pair, the value
of AMI is the second worst performing, whereas, for the second pair, the ARI value
is the third worst performing. The performance of the selected pairs U12-U15 and
U10-U18 is similar (they are one of the best and worst performing pairs) in experi-
mental scenario B1 when the users’ individual models are integrated using DIBCA++
(see Tables 3 and 4). Hence, they can be used to visualize the internal steps of the
algorithm. For both the pairs, the fourth fold, i.e., the fold that uses all the data of
the data set, is used to illustrate the results.

Figure 7 presents the correlations between these pairs identified by the domain
correlation module of DIBCA++. It can be observed that the correlations extracted
for U12-U15 are among similar clusters or activities. While in the case of the U10-
U18, there are more mismatches when compared to U12-U15. This explains the
good and bad performance of U12-U15 and U10-U18 respectively in experiment B1
(Tables 3 and 4). It can also be observed that in the case of U10-U18, the ASM
produces higher improvement in comparison with SM than in the case of U12-U15
(see columns SD-SM and SD-ASM). In general, the identified correlations indirectly
state that U10 and U18 have differences in the way they perform the same activities,
and hence, this negatively affects the model performance when their data are com-
bined together (Table 5) as personalization is lost. The case is the opposite when the
data of U12 and U15 are integrated.

232

10

0

1

2

3

4

5

6

7

8

9

11

12

10

0

1

2

3

4

5

6

7

8

9

11

12

Sitting

Lying

Standing

Washing dishes

Vacuuming

Sweeping

Walking

Ascending stairs

Descending stairs

Walking on Treadmill

Bicycling 50 W

Bicycling 100 W

Jumping on rope

U12-U15

(a)

10

0

1

2

3

4

5

6

7

8

9

11

12

10

0

1

2

3

4

5

6

7

8

9

11

12

Lying

Standing

Washing dishes

Vacuuming

Sweeping

Walking

Ascending stairs

Descending stairs

Walking on Treadmill

Bicycling 50 W

Bicycling 100 W

Jumping on rope

Sitting

U10-U18 -

(b)

Figure 7: Visualisation of the correlations identified by the domain correlation module of the DIBCA++ on the
selected two pairs of users. The correlated clusters are merged by the domain integration module of DIBCA++.
(a) Correlations identified for user pair U12-U15, the best-performing pair; (b) Correlations identified for user pair
U10-U18, one of the worst performing pairs.

In order to further understand the reason behind the mismatches in the correla-
tions, we visualize one more layer of how DIBCA++ works, and a random pair of
mismatched correlations is selected, i.e., cluster 0 of U12 (left column), U15 (right
column), and cluster 1 of U15 (see Figure 7a). Figure 8 presents the mean vector
pairs of both clusters. Note that mean vectors are used to find the closest cluster (see
Algorithm VII.2). Figure 8a depicts the mean vectors of cluster 0 from both U12 and
U15, whereas Figure 8b plots the mean vectors of cluster 0 of U12 and cluster 1 of
U15. From both figures, it can be clearly observed that cluster 0 of U12 is closer
to cluster 1 of U15, explaining the reasoning behind the decision of the algorithm.
Through this, we would like to showcase the explainability aspect of the algorithm,
which can be useful in building trust and acceptance to use the designed algorithm in
a wider range of applications.

8 Conclusion and Future Work
In this paper, we have proposed a domain adaptation algorithm entitled DIBCA++,
which is an optimized and robust version of its predecessor DIBCA. DIBCA++ has
been designed to be resource-efficient and robust to outliers. In addition, we have

233

0 1 2 3 4 5 6 7
0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

(a)

0 1 2 3 4 5 6 7
0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

(b)

Figure 8: Visualization of the internal step, which can be used to explain the obtained correlation between
cluster 0 of U12 and cluster 1 (instead of cluster 0) of U15. (a) Mean vectors of clusters 0 of U12 and U15; (b)
Mean vectors of clusters 0 and 1 of U12 and U15 respectively.

developed an improved learning algorithm used for building the initial clustering
models of the domains. This work also presents a detailed description of the main
modules of DIBCA++, which has been extensively studied and evaluated with re-
spect to well-designed experimental scenarios in two different real-world use cases,
namely Human Activity Recognition (HAR) and smart logistics. The experimental
results have shown that the DIBCA++ is capable of transferring knowledge between
domains that, indeed, leads to improved performance results. In one of the experi-
ments on the smart logistics use case, it has been observed that the adapted source
and target models performed better than the original source and target models 70%
and 80% of the time, respectively. The results on HAR also showcase improved
performance when data from different domains are handled individually compared
to when the data is combined, thus highlighting the importance of building personal-
ized models.

In addition to the above-mentioned experiments, DIBCA++’s performance has
also been compared to that of DIBCA. The experimental results showcase the bet-
ter performance of DIBCA++ compared to the original DIBCA. It is convincingly
the best performer on the HAR use case and outperforms DIBCA in 82.5% of the
conducted experimental scenarios for the smart logistics use case.

Another advantage of the proposed algorithm is its explainability feature. It facil-
itates the analysis and interpretation of the obtained results, which supports a better
understanding and acceptance of the algorithm and eventually can lead to the extrac-
tion of new knowledge about the studied data phenomenon.

Our future plans aim to evaluate the usability of the DIBCA++ in new applied do-
main adaptation scenarios. A sequential version of the algorithm will also be tested
and further evaluated. The sequential version of DIBCA++ would allow continu-
ous updating of the current integrated model and generating of new adapted domain
models when data from a new domain is available.

234

Acknowledgments
This research was funded partly by the Knowledge Foundation, Sweden, through the
Human-Centered Intelligent Realities (HINTS) Profile Project (contract 20220068).
In addition, the data used in one of the experiments were provided due to the in-
volvement in the Sony RAP 2020 Project “Distributed and Adaptive Edge-based AI
Models for Sensor Networks”.

Abbreviations
The following abbreviations are used in this manuscript:

AI: Artificial Intelligence
ASM: Adapted Source Model
ATM: Adapted Target Model
AMI: Adjusted Mutual

Information
ARI: Adjusted Rand Index
DaLiAc: Daily Life Activities
DIBCA: Domain Integration

Bi-correlation Clustering
Algorithm

DIBCA++: Optimized Domain
Integration Bi-correlation
Clustering Algorithm

GNSS: Global Navigation Satellite
System

HAR: Human Activity Recognition
ISM: Inductive System Health

Monitoring
IM: Integrated Model
LTE: Long Term Evolution
ML: Machine Learning
MI: Mutual Information
ODIP: Online Domain Incremental

Pool
OTDD: Optimal Transportation

Dataset Distance
RI: Rand Index
SD: Source Data
SM: Source Model
TD: Target Data
TM: Target Model
XAI: Explainable AI

References
[1] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He. “A

Comprehensive Survey on Transfer Learning”. In: Proceedings of the IEEE
109.1 (2021), pp. 43–76. DOI: 10.1109/JPROC.2020.3004555.

[2] M. AlShehhi, E. Damiani, and D. Wang. “Toward Domain Adaptation for
small data sets”. In: Internet of Things 16 (2021), p. 100458. ISSN: 2542-6605.
DOI: https://doi.org/10.1016/j.iot.2021.100458.

235

https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/https://doi.org/10.1016/j.iot.2021.100458

[3] V.M. Devagiri, V. Boeva, and S. Abghari. “Domain Adaptation Through Clus-
ter Integration and Correlation”. In: 2022 IEEE International Conference on
DataMiningWorkshops (ICDMW). 2022, pp. 1–8. DOI: 10.1109/ICDMW58026.
2022.00025.

[4] D. L. Iverson. “Inductive SystemHealthMonitoring.” In: IC-AI. 2004, pp. 605–
611.

[5] A. Reiss and D. Stricker. Introducing a New Benchmarked Dataset for Activity
Monitoring. 2012. URL: https://archive.ics.uci.edu/ml/datasets/
pamap2+physical+activity+monitoring.

[6] P. Davidsson. “Coin Classification Using a Novel Technique for Learning
Characteristic Decision Trees by Controlling the Degree of Generalization”.
In: International Conference on Industrial, Engineering and Other Applica-
tions of Applied Intelligent Systems. 1996.

[7] M. De Lange and T. Tuytelaars. “Continual Prototype Evolution: Learning
Online fromNon-Stationary Data Streams”. In: 2021 IEEE/CVF International
Conference on Computer Vision (ICCV). 2021, pp. 8230–8239. DOI: 10.1109/
ICCV48922.2021.00814.

[8] S. J. Pan and Q. Yang. “A Survey on Transfer Learning”. In: IEEE Transac-
tions on Knowledge and Data Engineering 22.10 (2010), pp. 1345–1359. DOI:
10.1109/TKDE.2009.191.

[9] Y. Madadi, V. Seydi, K. Nasrollahi, R. Hossieni, and T. Moeslund. “Deep Vi-
sual Unsupervised Domain Adaptation for Classification Tasks: A Survey”.
In: IET Image Processing 14.14 (2020), pp. 3283–3299. ISSN: 1751-9659. DOI:
10.1049/iet-ipr.2020.0087.

[10] G. Csurka.Domain adaptation in computer vision applications. Cham: Springer
International Publishing, 2017.

[11] J. Li, G. Li, Y. Shi, and Y. Yu. “Cross-domain adaptive clustering for semi-
supervised domain adaptation”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2021, pp. 2505–2514. DOI: 10.
1109/CVPR46437.2021.00253.

[12] H. Wang, J. Tian, S. Li, H. Zhao, F. Wu, and X. Li. “Structure-conditioned ad-
versarial learning for unsupervised domain adaptation”. In: Neurocomputing
497 (2022), pp. 216–226. ISSN: 0925-2312. DOI: 10.1016/j.neucom.2022.
04.094.

[13] S. Hundschell, M. Weber, and P. Mandl. “An Empirical Study of Adversarial
Domain Adaptation on Time Series Data”. In: Artificial Intelligence and Soft
Computing. Ed. by L. Rutkowski, R. Scherer, M. Korytkowski, W. Pedrycz,
R. Tadeusiewicz, and J. M. Zurada. Cham: Springer International Publishing,
2023, pp. 39–50. ISBN: 978-3-031-23492-7.

236

https://doi.org/10.1109/ICDMW58026.2022.00025
https://doi.org/10.1109/ICDMW58026.2022.00025
https://archive.ics.uci.edu/ml/datasets/pamap2+physical+activity+monitoring
https://archive.ics.uci.edu/ml/datasets/pamap2+physical+activity+monitoring
https://doi.org/10.1109/ICCV48922.2021.00814
https://doi.org/10.1109/ICCV48922.2021.00814
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1049/iet-ipr.2020.0087
https://doi.org/10.1109/CVPR46437.2021.00253
https://doi.org/10.1109/CVPR46437.2021.00253
https://doi.org/10.1016/j.neucom.2022.04.094
https://doi.org/10.1016/j.neucom.2022.04.094

[14] G. Li, G. Kang, Y. Zhu, Y. Wei, and Y. Yang. “Domain Consensus Clus-
tering for Universal Domain Adaptation”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). June 2021,
pp. 9757–9766.

[15] J. Xu, J. Song, Y. Sang, and L. Yin. “CDAML: a cluster-based domain adaptive
meta-learning model for cross domain recommendation”. In:World Wide Web
(2022), pp. 1573–1413. DOI: 10.1007/s11280-022-01068-5.

[16] S. Tang, Y. Zou, Z. Song, J. Lyu, L. Chen, M. Ye, S. Zhong, and J. Zhang.
“Semantic consistency learning on manifold for source data-free unsupervised
domain adaptation”. In:Neural Networks 152 (2022), pp. 467–478. ISSN: 0893-
6080.

[17] M. Zhu. “Source Free Domain Adaptation by Deep Embedding Clustering”.
In: 2021 18th Int. Computer Conference on Wavelet Active Media Technol-
ogy and Information Processing (ICCWAMTIP). 2021, pp. 309–312. DOI: 10.
1109/ICCWAMTIP53232.2021.9674068.

[18] H. Tang, Y. Wang, and K. Jia. “Unsupervised domain adaptation via distilled
discriminative clustering”. In:Pattern Recognition 127 (2022), p. 108638. ISSN:
0031-3203. DOI: https://doi.org/10.1016/j.patcog.2022.108638.

[19] M. Orbes-Arteainst, J. Cardoso, L. Sørensen, C. Igel, S. Ourselin, M. Mo-
dat, M. Nielsen, and A. Pai. “Knowledge Distillation for Semi-supervised
Domain Adaptation”. In: OR 2.0 Context-Aware Operating Theaters and Ma-
chine Learning in Clinical Neuroimaging. Ed. by L. Zhou, D. Sarikaya, S. M.
Kia, S. Speidel, A. Malpani, D. Hashimoto, M. Habes, T. Löfstedt, K. Ritter,
and H. Wang. Cham: Springer International Publishing, 2019, pp. 68–76.

[20] N. Gunasekara, H. Gomes, A. Bifet, and B. Pfahringer. “Adaptive Online Do-
main Incremental Continual Learning”. In:Artificial Neural Networks andMa-
chine Learning – ICANN 2022. Ed. by E. Pimenidis, P. Angelov, C. Jayne, A.
Papaleonidas, and M. Aydin. Cham: Springer International Publishing, 2022,
pp. 491–502.

[21] S. Abghari, V. Boeva, E. Casalicchio, and P. Exner. “An Inductive System
Monitoring Approach for GNSS Activation”. In: Artificial Intelligence Appli-
cations and Innovations. Ed. by I. Maglogiannis, L. Iliadis, J. Macintyre, and
P. Cortez. Cham: Springer International Publishing, 2022, pp. 437–449.

[22] J. G. Saw, M. C. K. Yang, and T. C. Mo. “Chebyshev Inequality With Esti-
mated Mean and Variance”. In: The American Statistician 38 (1984), pp. 130–
132.

237

https://doi.org/10.1007/s11280-022-01068-5
https://doi.org/10.1109/ICCWAMTIP53232.2021.9674068
https://doi.org/10.1109/ICCWAMTIP53232.2021.9674068
https://doi.org/https://doi.org/10.1016/j.patcog.2022.108638

[23] V. Boeva and B. De Baets. “A new approach to admissible alternatives in inter-
val decision making”. In: 2004 2nd International IEEE Conference on ’Intel-
ligent Systems’. Proceedings (IEEE Cat. No.04EX791). Vol. 1. 2004, 110–115
Vol.1. DOI: 10.1109/IS.2004.1344647.

[24] M. T. Ribeiro, S. Singh, and C. Guestrin. “”Why Should I Trust You?”: Ex-
plaining the Predictions of Any Classifier”. In: Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing. KDD ’16. San Francisco, California, USA: Association for Computing
Machinery, 2016, pp. 1135–1144. ISBN: 9781450342322. DOI: 10.1145/2939672.
2939778.

[25] S. Srihari. “Explainable Artificial Intelligence: An Overview”. In: Journal of
the Washington Academy of Sciences (2020).

[26] H. Leutheuser, D. Schuldhaus, and B.M. Eskofier. “Hierarchical, multi-sensor
based classification of daily life activities: comparison with state-of-the-art
algorithms using a benchmark dataset”. In: PloS one 8.10 (2013), e75196. DOI:
10.1371/journal.pone.0075196.

[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau,M. Brucher,M. Perrot, and E. Duchesnay. “Scikit-learn:Machine
Learning in Python”. In: Journal of Machine Learning Research 12 (2011),
pp. 2825–2830.

[28] L. Hubert and P. Arabie. “Comparing partitions”. In: Journal of Classification
2.1 (Dec. 1985), pp. 193–218.

[29] W. M. Rand. “Objective Criteria for the Evaluation of Clustering Methods”.
In: Journal of the American Statistical Association 66.336 (1971), pp. 846–
850. ISSN: 01621459.

[30] N. X. Vinh, J. Epps, and J. Bailey. “Information Theoretic Measures for Clus-
terings Comparison: Is a Correction for Chance Necessary?” In: Proceedings
of the 26th Annual International Conference on Machine Learning. ICML’09.
Montreal, Quebec, Canada, 2009, pp. 1073–1080.

[31] N. X. Vinh, J. Epps, and J. Bailey. “Information Theoretic Measures for Clus-
terings Comparison: Variants, Properties, Normalization and Correction for
Chance”. In: Journal of Machine Learning Research 11.95 (2010), pp. 2837–
2854. URL: http://jmlr.org/papers/v11/vinh10a.html.

[32] W. Lu, Y. Chen, J. Wang, and X. Qin. “Cross-domain activity recognition via
substructural optimal transport”. In: Neurocomputing 454 (2021), pp. 65–75.
ISSN: 0925-2312. DOI: https://doi.org/10.1016/j.neucom.2021.04.
124. URL: https://www.sciencedirect.com/science/article/pii/
S0925231221007025.

238

https://doi.org/10.1109/IS.2004.1344647
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1371/journal.pone.0075196
http://jmlr.org/papers/v11/vinh10a.html
https://doi.org/https://doi.org/10.1016/j.neucom.2021.04.124
https://doi.org/https://doi.org/10.1016/j.neucom.2021.04.124
https://www.sciencedirect.com/science/article/pii/S0925231221007025
https://www.sciencedirect.com/science/article/pii/S0925231221007025

[33] J. Wang, Y. Chen, L. Hu, X. Peng, and P. S. Yu. “Stratified Transfer Learning
for Cross-domain Activity Recognition”. In: 2018 IEEE International Confer-
ence on Pervasive Computing and Communications (PerCom). 2018, pp. 1–
10. DOI: 10.1109/PERCOM.2018.8444572.

[34] D. Alvarez-Melis and N. Fusi. “Geometric Dataset Distances via Optimal
Transport”. In: NeurIPS 2020. ACM. Feb. 2020.

239

https://doi.org/10.1109/PERCOM.2018.8444572

Paper VIII
Putting Sense into Incomplete
Heterogeneous Data with Hypergraph
Clustering Analysis

Vishnu Manasa Devagiri, Pierre Dagnely, Veselka Boeva, and Elena Tsi-
porkova
In: Symposium on Intelligent Data Analysis (IDA 2024), Stockholm,
Sweden, April 2024 (In press).

Abstract

Many industrial scenarios are concernedwith the exploration of high-
dimensional heterogeneous data sets originating from diverse sources
and often incomplete, i.e., containing a substantial amount of missing
values. This paper proposes a novel unsupervisedmethod that efficiently
facilitates the exploration and analysis of such data sets. The method-
ology combines in an exploratory workflow multi-layer data analysis
with shared nearest neighbor similarity and hypergraph clustering. It
produces overlapping homogeneous clusters, i.e., assuming that the as-
sets within each cluster exhibit comparable behavior. The latter can be
used for computing relevant KPIs per cluster for the purpose of perfor-
mance analysis and comparison. More concretely, such KPIs have the
potential to aid domain experts in monitoring and understanding asset
performance and, subsequently, enable the identification of outliers and
the timely detection of performance degradation.
Keywords: Clustering, Heterogeneous data, Missing values, Hypergraph,
Shared nearest neighbor similarity

1 Introduction
The majority of real-world data related to monitoring the performance of industrial
equipment or of production and engineering processes is typically collected from
multiple diverse sources and, thus, is very heterogeneous. It is a challenging task [1]
to analyze and derive meaningful insights, e.g., evaluate and compare operational

241

performance across sources, from such data. Moreover, industrial data usually con-
tains a lot of missing entities due to different reasons such as incomplete metadata
records, lack of standardization, equipment malfunctioning, registration errors, com-
munication issues, etc. This missing data usually affects small but varying sets of pa-
rameters/measurements, while the rest of the data records are available for analysis.
However, mining information from complex multi-source data with missing values
can be challenging since many state-of-the-art algorithms are not designed to handle
missing values. In order to enable the use of such algorithms, common practices are
to either impute missing values or to completely remove that particular instance or
feature (the ones with a high degree of missing values). Both of these approaches
can negatively affect the data quality though [2]. In addition, high-dimensional data
is often composed of entries of a very diverse nature, and it might occur that some
interesting, specific properties are associated only with a certain subset/type of fea-
tures. There exists a risk of missing these when all the available features are explored
together. Studies like [3–5], highlight the importance of viewing data from different
perspectives or views (i.e., considering relevant feature subsets).

To address these challenges, we propose here a hybrid clustering methodology,
realizing a multi-layer data analysis workflow, which is employing shared nearest
neighbor similarity (SNNS) and hypergraph clustering. The approach is capable of
extracting meaningful insights from high-dimensional data and, at the same time, is
efficient at handling missing values without losing valuable information. More con-
cretely, the method allows to organize the assets into separate (overlapping) groups
such that the assets in each group share similar properties and, thus, are expected to
exhibit comparable performance. In this way, it facilitates the complex task of mon-
itoring and making sense of the performance of a large portfolio of heterogeneous in
nature industrial assets. The potential of the proposed methodology is validated on
a real-world data set with a substantial amount of missing values originating from
the condition monitoring of a portfolio of industrial assets. These assets are very
diverse in terms of technical specifications and functionalities, are used in different
application contexts, and are produced by different manufacturers.

2 Related Work
Mining of data constructed across multiple domains or modalities (categorical, nu-
merical, transactional, etc.) has been receiving high attention in the last decades due
to the continuous increase of the variety in data sources [6]. This kind of data analysis
is required within the context of grouping and understanding multi-view, heteroge-
neous, or multi-modal data in many real-world scenarios. The traditional clustering
techniques usually fail to identify the cluster of objects with different characteristics
due to difficulties in finding suitable similarity measures, or they are not capable of
capturing the intrinsic structure of clusters.

242

To reduce these limitations, multi-view [3], multi-layered [4] or multi-type [5]
clustering techniques are introduced. For example, multi-view clustering uses more
than one set of attributes to improve the quality of generated clustering solutions [3].
In [4], a multi-layer clustering technique is introduced, originally designed for anal-
ysis of network data available in more than one layer [7]; where in contrast to multi-
view clustering, conditional independence of layers is not assumed. In real-life sce-
narios, heterogeneous information networks (HINs) could be formed by the existence
of multiple types of objects that are connected to each other through different kinds
of links. In [8], the authors have studied the multi-type co-clustering problem in
general HINs. They have proposed a clustering framework that can model general
HINs and simultaneously generate clusters for all types of objects. In [5], a novel
method that performs both clustering and classification tasks on HINs is proposed.
The proposed technique is able to group heterogeneous objects in a network together
and assign labels to unlabeled objects.

A common industrial challenge that impacts these methods is the presence of
missing data. It is usually addressed by removing entries with missing data or im-
puting the missing data, e.g., replacing missing values of a feature with the average
of known values for that feature or predicting them based on other known features
of that entry. For instance, in [9], Yang et al. have proposed a multi-view clustering
methodology that tackles missing data through imputation but also addresses incon-
sistencies between views.

However, data imputation always carries the risk of imputing noisy data, espe-
cially for industrial assets that are often highly heterogeneous. The creation of multi-
view clustering approaches that deal with missing data in their input is still in its
infancy. In [10], the authors use an indicator matrix whose elements indicate which
data entries are observed and assess cluster validity only on observed entries. How-
ever, this approach cannot easily be generalized to all clustering approaches. More-
over, the proposed methodologies deal with incomplete views or missing values with
some constraints, but they struggle when all views have missing values and even
when the samples just miss a few features in a view [11].

In this work, we propose a novel multi-view clustering approach, which exploits
the power of multi-layer clustering data analysis to transform the highly-dimensional
heterogeneous data set into a hypergraph. Subsequently, the final clustering solution
is obtained by applying a creative hypergraph clustering methodology. Our method
goes beyond the existing state-of-the-art in its ability to deal efficiently with miss-
ing values without losing any information and to produce overlapping multi-view
partitions without imposing any constraints on the underlying multi-source data.

243

3 Hypergraph-based Clustering Analysis Method
In this work, we study a real-world industrial use case considering the exploration
and analysis of multi-source data originating from a large portfolio of heterogeneous
assets (compressors). The available data set is composed of both metadata and sensor
measurements (in the form of time series) and contains substantial quantities of miss-
ing data. Analyzing and interpreting data from different types of assets is challenging
as they cannot be directly compared since they may substantially differ in technical
specifications and other essential characteristics. Asset comparison can be facilitated
by grouping the assets into more homogeneous subsets (clusters), i.e., composed of
assets with similar characteristics and settings. The high-dimensional metadata, de-
scribing assets’ technical specifications and various other properties, is used for this
purpose. The available metadata is very suitable for having a realistic evaluation of
the application potential of our clustering approach.

In addition, the validity of the generated clustering solution is further evaluated
on the time series data originating from the continuous monitoring of the assets dur-
ing their operation in the field. The assets’ performance is analyzed by estimating
and comparing the evolution of diverse, performance-related, Key Performance In-
dicators (KPIs) (see Section 4.4 for more details).

The proposed clusteringworkflow for analyzingmulti-source heterogeneous data
is divided into four main steps as illustrated in Figure 1 and outlined in detail in the
subsections below.

Set of data objects

I.1 Layering

Layer 1 (color and size)

II.1 Neighborhood
identification

Combining the clusters

I.2 Multi-layered clustering & Hypergraph formation

Clustered by color and size

n1

n3

n2

Clustered by shape

n4

n5

Layer 2 (shape)

II.2 Calculating SNNS &
Simple graph construction

III Cluster Integration
and Analysis

IV Deriving KPIs

Hyperedge Neighbours

n1 n1, n3, n4, n5

… …

n6 n6, n1, n2

Figure 1: Illustrative summary of the proposed approach using two layers. SNNS stands for shared nearest
neighbor similarity.

3.1 Step I: Hypergraph Construction
Let us assume that multi-source information about a set D of data objects with miss-
ing entities, which needs to be grouped into a number of similar categories, is avail-

244

able. The data objects are described in terms of a set F of relevant features. The
workflow of the different steps used to construct a hypergraph with the data objects
acting as vertices is outlined below:

3.1.1 I.1: Layering
Initially, the features in F are categorized intoL different thematic layers, each repre-
senting a particular aspect describing the data objects. Domain knowledge is used in
this step to identify the different layers. Each layer i ∈ L is represented by a feature
set Fi, Fi ⊆ F . Generalizing the layer construction step to different use cases is not
straightforward and requires investing time in engaging with domain experts and ac-
quiring a good understanding of the phenomenon under study. Section 4.1 provides
more details on how this step is performed for the use case studied here.

3.1.2 I.2: Multi-layered clustering and hypergraph formation
Once the layers are identified, a hypergraph is constructed as it is explained below.
A hypergraph is a generalized graph where edges, also referred to as hyperedges or
nets can connect more than two nodes [12].

• In each layer i, for i = 1, 2, . . . , l, data objects havingmissing values in feature
set Fi are removed thus a subset of data objects Di ⊆ D is produced. It must
be noted that these removed data objects are still considered in other layers
where their features are completely captured. This allows not to exclude data
objects with missing values from the analysis.

• Data objects Di, for i = 1, 2, . . . , l, in each layer are clustered to obtain a
disjoint clustering solution represented by Ci.

• The produced clustering solutions from all the different layers are united to
build an unweighted hypergraph H = (V, N). The set of vertices V of this
graph are the data objects, i.e., V ≡ D, and the set of hyperedges or nets
N contains all the clusters identified by clustering the different layers, i.e.,
N = C1 ∪ C2 ∪ . . . ∪ Cl.

3.2 Step II: Transformation to Simple Graph
Once the hypergraph is built, it is transformed into an undirected weighted graph also
known as a simple graph. This allows us to benefit further from the produced lower
data granularity and facilitates grouping the data objects into the final clustering so-
lution. In addition, this helps to handle missing entities, since the raw data are not
used in the rest of the computations.

The new simple graph can be represented as G = (N, E, s), where N , set of
graph vertices, also the set of edges of the hypergraph H; E is the set of the edges

245

of the simple graph, and s is a real value function assigning a weight to each graph
edge presented by the SNNS between vertices connected by this edge.

3.2.1 II.1: Neighborhood identification
For each hyperedge ni, (for i = 1, 2, . . . , m and m the total number of hyperedges)
its set of neighbors Γ(ni) is identified. A hyperedge is considered a neighbor of
another hyperedge when there is a non-empty intersection between the two, i.e. if
they have at least one common data object or pin (vertices in each hyperedge) of
the hypergraph in both. Note that the hyperedge itself is also added to the list of
neighbors (used while calculating the similarity). This can be formalized as:

Γ(ni) = {nj | nj ∈ N ∧ ni ∩ nj ̸= ∅}. (VIII.1)

Once the neighborhoods have been identified, the data objects will not be used,
since the rest of the computation is entirely conducted using this information.

3.2.2 II.2: Calculating shared nearest neighbor similarity
We use the shared nearest neighbor similarity (SNNS) to measure the resemblance
between two hyperedges of a hypergraph by considering their neighborhoods. Once
the neighbors are identified, SNNS (s) between each pair of hyperedges ni and nj ,
for i, j ∈ {1, 2, . . . , m} is calculated as follows (inspired from [13] and adapted):

s(ni, nj) =

|Γ(ni)∩Γ(nj)|
|Γ(ni)∪Γ(nj)| , if ni, nj ∈ Γ(ni) ∩ Γ(nj).
0, otherwise

(VIII.2)

3.3 Step III: Cluster Integration and Analysis
3.3.1 III.1: Partitioning into overlapping clusters
Once the graph G = (N, E, s) is constructed, any clustering technique can be used
to divide its vertices into different clusters, e.g., k-medoids or some graph-based
clustering algorithm. In the obtained clustering solution, the verticesN of the simple
graph (which are also the hyperedges of the hypergraph) are replacedwith the vertices
V of the hypergraph to generate the final clustering output. Note that we obtain an
overlapping final clustering solution of the data objectsD ≡ V , i.e., each data object
can be assigned to more than one cluster. This is a desired outcome as, in many
application scenarios, it is difficult to categorize an object into just a single category.

3.3.2 III.2: Deriving peak density hyperedges
Furthermore, we can identify the peak density vertices (hyperedges) in G similarly
to the idea introduced in [13]. Namely, the SNNS between different vertices of
G = (N, E, s), can be used to calculate local density ρ of each vertex ni, for

246

i = 1, 2, . . . , m, as follows: ρ(ni) =
∑

nj∈Γ(ni) s(ni, nj). Subsequently, a threshold
t can be used such that vertices having a local density greater than or equal to t, i.e.,
ρ(ni) ≥ t, are considered as the peak density points (hyperedges). These hyperedges
can be interpreted as the most representative (typical) groups of objects.

3.4 Step IV: Deriving KPIs to analyze performance
The obtained clustering solution defines several different profiles, each characterized
by the specific feature values defining each cluster. Operational data collected from
continuous condition monitoring can then be used to enrich these profiles, e.g., to
characterize them. In most real-world scenarios hardly any labeled data on the actual
performance of the assets is collected. Instead, general indicators like the mean time
between failures, the percentage of unplanned maintenance, or the overall mainte-
nance cost are taken into account. These KPIs could be used to link the profiles to
asset health. However, often, as in our use case, such data is not available and more-
over, these indicators are not always directly linked to operational efficiency and
overall performance in general but just to failures. We suggest instead using KPIs
that allow us to compare operational behavior and performance across assets. In
Section 4.4, different KPIs are described, being identified together with the domain
experts, related to concrete performance indicators concerning the use case.

4 Evaluation in Industrial Use-case
This section presents a detailed overview of how the proposed methodology has been
evaluated on a real-world industrial use case concerned with the condition monitor-
ing of a fleet of compressors. Due to the heterogeneity of the available data, it is
very challenging to derive useful insights about the operational performance of the
different compressors. The research methodology proposed in this paper allows to
overcome these challenges by facilitating incremental data exploration, resulting in
partitioning the heterogeneous compressor population into relatively homogeneous
overlapping groups sharing similar characteristics. Thanks to this partitioning, sen-
sor data can be efficiently used to study and compare the operational performance
within and across homogeneous compressor groups.

The data set used in our validation study has been offered to us by our indus-
trial partners in the context of a research project exploring how to augment conven-
tional analytics with log data. The companymanages data from compressors installed
worldwide and used in a wide variety of conditions, e.g., in factories and subjected
to harsh conditions, or in hospitals and required to comply with very tight tolerance
levels. The data set provided contains information about 265 compressors, charac-
terized by 393 different parameters, e.g., brand, age, multitude of technical specifica-
tions. In addition, each of the compressors is monitored in the field by a wide range

247

of sensors. This study focuses on four commonly used sensors: ambient temperature,
compressor outlet temperature and pressure, and internal pressure. The sensor data
is reported at a granularity of one second, but the amount of data varies considerably
from one compressor to another, from 6 months to 7 years.

4.1 Step I: Hypergraph Construction
Initially, the data set has been cleaned and analyzed to identify relevant features, as
using redundant features can negatively impact the final result. Over the 393 dif-
ferent parameters, only 24 relevant features have been retained using various tech-
niques such as domain knowledge, dropping columnswith a high percentage of NaNs
(> 60%), uniqueness of the feature values among different compressors, and corre-
lation between the features. Subsequently, the selected features have been grouped
into different conceptual layers using expert knowledge. For instance, all features re-
lated to pressure tolerance are grouped together. In addition, features of similar types
(categorical, binary, and numerical) are kept together. In this use case, a total of ten
layers have been created, consisting of 1 to 4 features per layer. The layers are final-
ized after being validated by domain experts, detailed information is given in Table 1.
Based on the type of data available in each layer, different clustering techniques have
been used (see Table 1). In layers where the k-means clustering technique is used,
the optimal number of clusters is identified by applying four different cluster valida-
tion measures, namely Silhouette [14], Calinski Harabasz [14], Davies Bouldin [14],
and Connectivity [15]. Once the clustering in each layer is finalized, an unweighted
hypergraph is obtained by combining the clustering solutions of different layers. The
obtained hypergraph has 63 edges (the sum of the number of clusters in each layer).

Table 1: An overview of the multi-layered clustering phase of hypergraph construction.

Layer Description Instances
with NaNs

Instances
Used

Type of
Features

Clustering
based on Clusters

1 Supplier 42 223 Categorical

Categories

25

3 Cooling type 47 218
Binary

4

10 Activated temp. sensors 19 246 4

9 Act. pressure sensors 19 246 11

2 Pressure tolerance 115 150

Numerical
K-means

4

5 Outlet temp. tolerance 99 166 5

6 Output settings 87 178 2

8 Ambient temp. tolerance 118 147 2

4 Installation type 11 254 Domain
knowledge 2

7 Age 79 186 Binning 4

248

4.2 Step II: Transformation to Simple Graph
The obtained hypergraph in the previous step is transformed into a weighted simple
graph by considering the hyperedges as the vertices of the new graph. The weight of
each edge of the simple graph is obtained by using the SNNS between the two vertices
(hyperedges) the edge connects, which can also be represented using a 63×63 SNNS
adjacency matrix. The obtained simple graph is presented in Figure 2a. It can be
observed that the central region of the graph is very dense. Interesting to note that
the four vertices far away from the center (7, 13, 21, 23) are the singletons obtained
in the final clustering solution.

(a) (b)

Figure 2: (a) Visual representation of the simple graph, different layers are distinguished by the color of vertices.
(b) Dissimilarity matrix based on SNNS between different vertices ordered according to their cluster belonging.
White cells represent values closer to one.

4.3 Step III: Cluster Integration and Analysis
The 63 × 63 SNNS matrix calculated above, converted into a dissimilarity matrix,
is the input for k-medoids clustering algorithm. The optimal number of clusters,
twelve, has been identified by Silhouette (0.08) and Connectivity (92.3) validation
indices. In addition to this, we have also used the dissimilarity matrix, with edges
sorted based on the cluster they belong to (see Figure 2b), to visually validate the
obtained clustering output. Well-formed similarity patterns can be observed along
the diagonal confirming to some extent the validity of the obtained partition. Once
the clustering is obtained, the vertices of the simple graph are replaced with those
of the hypergraph, thus resulting in an overlapping clustering solution, as different
hyperedges have common vertices.

Figure 3 depicts the number of compressors per cluster and their uniqueness in re-
gard to how many clusters they have been assigned to. The clusters can be grouped
into three categories: 1) two large, heavily overlapping, clusters (clusters 6 and 7)
with 237 and 245 compressors, respectively; 2) six medium-sized clusters with be-
tween 6 and 63 compressors (clusters 0, 1, 3, 4, 9 and 11); 3) four singleton clusters

249

not visualized in Figure 3. These four singletons are also part of the two big clusters,
6 and 7. It is interesting to note that these singletons capture four unique compres-
sor brands, only registered for these 4 compressors, thus confirming the potential of
the approach to identify even small unique cluster groups. These singletons are not
considered in the further discussion.

0 50 100 150 200 250
Number of compressors

0

1

3

4

6

7

9

11

Cl
us

te
r 13

17

2

3

1

1

55

59

7

24

38

15

4

156

156

25

49

4

7

3

1

12

12

3

6

1

1

1

1

1

Number of clusters in which the
specific compressor is available

1
2

3
4

5

Figure 3: Number of compressors (and their uniqueness) per cluster. The colors represent the compres-
sor uniqueness within the clusters, e.g., one compressor represented in lime-green is present in 5 clusters
(1, 3, 6, 7, 11).

The peak-density vertices (defined in Section 3.3, III.2) have been also identified
in the resulting simple graph. It is interesting to notice that all the twelve peak density
points lie within the two big clusters (6 and 7) of the k-medoids clustering solution.
This confirms that all the dense regions of the graph are situated together, thusmaking
it difficult to identify robust clusters if a density-based clustering algorithm is used.
This is also visualized in Figure 2a, where one can see that the center of the graph is
very densely populated.

It is interesting to investigate how the derived clusters differ in terms of the impor-
tance of the different features used in the construction of the initial hypergraph. The
kernel density estimation of the different features in each cluster has been calculated
for this purpose and visualized for three features in Figure 4. It can be observed that
there is quite some variability across the clusters per feature, e.g., cluster 9 appears to
have newer compressors, while the compressors in cluster 0 have been in use longer;
cluster 11 is characterized by a higher motor casing temperature high in comparison
to cluster 1; clusters 1 and 9 are characterized with higher ambient temperatures high,
than clusters 3 and 11.

10 0 10 20 30 40 50

0.00

0.02

0.04

0.06

0.08

0.10

De
ns

ity

age

50000 0 50000 100000 150000 200000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

De
ns

ity

1e 5motor_casing_temperature_high

50000 0 50000 100000 150000 200000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

De
ns

ity

1e 5 ambient_temperature_high

Cluster
0
1
3
4
6
7
9
11

Figure 4: Kernel density distributions of few selected features per cluster.

250

4.4 Step IV: Deriving KPIs to analyze performance
We also have a large sensor dataset at our disposal, which captures the compressors’
performance in the field. Combining both data types (metadata and sensor time se-
ries) allows to derive performance-related KPIs, e.g., assess the percentage of time
that the compressors are operating within the expected range as defined originally in
the metadata. Four sensors are considered: outlet pressure, internal pressure, outlet
temperature, and ambient temperature, and the results are shown in Figure 5. The
first three capture the compressor usage/internal behavior, while ambient tempera-
ture reflects the operational context.

0 1 3 4 6 7 9 11
Clusters

Internal pressure

Outlet pressure

Outlet temperature

Ambient temperature

97 94 100 100 97 97 93 100

92 94 96 100 91 92 57 95

80 69 99 100 86 88 88 98

29 50 37 51 45 44 21 34

Mean percentage

0 1 3 4 6 7 9 11
Clusters

16 23 0 0 16 15 21 0

20 21 18 0 25 24 41 21

40 45 4 0 33 31 30 12

44 50 47 54 48 48 39 46

Std of the percentage

30
40
50
60
70
80
90
100

0

10

20

30

40

50

Figure 5: The percentage of time, mean, and standard deviation (std), the compressors have been operating
within the expected range for the different sensors.

Considering clusters 6 and 7 are the largest, they can be regarded as representing
the typical (baseline) situation. It can also be observed that very few compressors
operate at the desired/recommended ranges for ambient temperature. TheKPIs based
on other sensors show fewer periods outside the expected ranges, except for cluster 9
which appears to meet specifications for only around 60% of operating time for outlet
pressure, and with the highest standard deviation for that feature. It is interesting to
observe this is also the cluster that has the lowest compliance, 21% of the time, with
respect to ambient temperature limits. These two deviations might be linked to one
another, which is already an interesting insight to be subjected to further investigation
by our industrial partners.

0 20 40 60 80
Ambient temperature

0.00

0.02

0.04

0.06

0.08

De
ns

ity

0 5000 10000
Outlet pressure

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

De
ns

ity

0 20 40 60 80 100
Outlet temperature

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

De
ns

ity

0 5000 10000
Internal pressure

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

De
ns

ity

Cluster
3
4
11

Figure 6: Kernel density distribution of the sensor data of selected clusters.

In general, three different groups of clusters can be distinguished: 1) clusters
6 and 7 representing regular/baseline behavior; 2) clusters 3, 4, and 11 are almost
always within range, indicating that these compressors are probably used in an envi-
ronment where it is of high importance to workwithin the expected ranges; 3) clusters

251

0, 1 and 9 exhibit many more periods outside the expected ranges, probably contain-
ing compressors operating in less constrained contexts. Further characterization of
these groups can be performed by examining the kernel density estimation of the dif-
ferent sensor values. For readability purposes, only group 2 (clusters 3, 4, and 11)
is showcased in Figure 6. It can be observed that cluster 4 is characterized by lower
ambient temperature but higher outlet temperature, while these are the opposite for
clusters 3 and 11. Cluster 4 is also characterized by very stable outlet and internal
pressures (around 7000) supporting the hypothesis that some of these compressors
are probably being used in some strictly regulated environments.

5 Conclusion
This work has presented a hybrid clustering methodology for analyzing and making
sense of complex, multi-source heterogeneous data sets emerging nowadays from
real-world industrial applications. Such data sets are typically, if not always, char-
acterized by a high rate of missing values, which makes their analysis by traditional
machine learning methods challenging. We have conceived a novel data exploration
workflow incorporating concepts such asmulti-layered clustering, hypergraph, shared
nearest neighbor similarity, and k-medoids, allowing us to arrive at amulti-dimensional
data partition without compromising data size due to missing values. The ability of
the proposed methodology to derive meaningful insights has been demonstrated in a
real-world industrial use case, which also convincingly confirmed the validity of the
produced clustering solution.

Acknowledgements
V. M. Devagiri’s and V. Boeva’s research is partly funded by the Knowledge Foun-
dation, Sweden, through the Human-Centered Intelligent Realities (HINTS) Profile
Project (contract 20220068). P. Dagnely’s and E. Tsiporkova’s research received
funding from the Flemish Government (AI Research Program).

References
[1] V. Wenz, A. Kesper, and G. Taentzer. “Clustering Heterogeneous Data Values

for Data Quality Analysis”. In: J. Data and Information Quality 15.3 (2023).
[2] M. C. de Goeij, M. van Diepen, K. J. Jager, G. Tripepi, C. Zoccali, and F. W.

Dekker. “Multiple imputation: dealing with missing data”. In: Nephrology
Dialysis Transplantation 28.10 (2013), pp. 2415–2420.

252

[3] L. Fu, P. Lin, A. V. Vasilakos, and S.Wang. “An overview of recent multi-view
clustering”. In: Neurocomputing 402 (2020), pp. 148–161. ISSN: 0925-2312.
DOI: https://doi.org/10.1016/j.neucom.2020.02.104.

[4] D. Gamberger et al. “Multilayer Clustering: ADiscovery Experiment on Coun-
try Level Trading Data”. In: Discovery Science. Springer Int. Publ., 2014,
pp. 87–98.

[5] G. Pio, F. Serafino, D. Malerba, and M. Ceci. “Multi-type clustering and clas-
sification from heterogeneous networks”. In: Information Sciences 425 (2018),
pp. 107–126.

[6] A. Abdullin and O. Nasraoui. “Clustering Heterogeneous Data Sets”. In: 2012
Eighth Latin American Web Congress. 2012, pp. 1–8.

[7] G. Caldarelli. Scale-Free Networks: Complex Webs in Nature and Technology.
Oxford University Press, Incorporated, 2007.

[8] Zhang et al. “Multi-type Co-clustering of General Heterogeneous Information
Networks via Nonnegative Matrix Tri-Factorization”. In: IEEE ICDM 2016.

[9] M. Yang et al. “Robust multi-view clustering with incomplete information”.
In: IEEE Trans. on Pattern Analysis and Machine Intelligence 45.1 (2022),
pp. 1055–1069.

[10] G. Chao et al. “Multi-view cluster analysis with incomplete data to understand
treatment effects”. In: Information sciences 494 (2019), pp. 278–293.

[11] G. Chao, S. Sun, J. Bi, et al. “A survey on multi-view clustering”. In: arXiv
preprint arXiv:1712.06246 2 (2017).

[12] S. Schlag, T. Heuer, L. Gottesbüren, Y. Akhremtsev, C. Schulz, and P. Sanders.
“High-Quality Hypergraph Partitioning”. In: ACM J. Exp. Algorithmics 27
(Feb. 2023).

[13] R. Liu, H. Wang, and X. Yu. “Shared-Nearest-Neighbor-Based Clustering by
Fast Search and Find ofDensity Peaks”. In: Inf. Sci. 450.C (June 2018), pp. 200–
226.

[14] I. F. Ashari et al. “Analysis of Elbow, Silhouette, Davies-Bouldin, Calinski-
Harabasz, and Rand-Index Evaluation on K-Means Algorithm for Classifying
Flood-Affected Areas in Jakarta”. In: Journal of Applied Informatics and Com-
puting 7.1 (2023), pp. 95–103.

[15] J. Handl, J. Knowles, and D. Kell. “Computational cluster validation in post-
genomic data analysis”. In: Bioinformatics 21.15 (2005), pp. 3201–3212.

253

https://doi.org/https://doi.org/10.1016/j.neucom.2020.02.104

	Acknowledgements
	List of Papers
	Abbreviations
	Introduction
	Research Problem
	Contributions and Papers Included
	Thesis Structure

	Background
	Domain Adaptation
	Evolving (Stream) Clustering
	Formal Concept Analysis
	Graph-Based Clustering
	Multi-Instance Clustering
	Multi-View (Stream) Clustering

	Related Work
	Evolving Clustering
	Multi-Source Data Analysis
	Domain Adaptation

	Methodology
	Data sets
	Distance measures
	Evaluation measures
	Internal Measures
	External measures
	Information Theory

	Research Methodology
	Challenges

	Validity Threats
	Internal Validity Threat
	External Validity Threat
	Construct Validity Threat
	Conclusion Validity Threat

	Results and Analysis
	Evolving Clustering
	Multi-Source Data Analysis
	Domain Adaptation
	Summary

	Conclusions and Future Work
	Experiences and Learning Outcomes
	Bibliography
	Bipartite Split-Merge Evolutionary Clustering
	Introduction
	Related Work
	Methods and the Proposed Solution
	Problem Description
	Pivot Bi-Clustering Algorithm
	Dynamic Split-and-Merge Clustering Algorithm
	Bipartite Split-Merge Evolutionary Clustering Algorithm

	Experimental Setup
	Data
	Metrics
	Experiments
	Implementation and Availability

	Results and Discussion
	Conclusion and Future Work
	References

	Split-Merge Evolutionary Clustering for Multi-View Streaming Data
	Introduction
	Related Work
	Methods and Background
	Split-Merge Clustering
	Formal Concept Analysis

	Proposed Multi-View Split-Merge Clustering
	Initial Evaluation and Results
	Data and Experimental Setup
	Results and Discussion

	Conclusions and Future work
	References

	A Multi-View Clustering Approach for Analysis of Streaming Data
	Introduction
	Related Work
	Background
	Multi-Instance Clustering and Hausdorff Distance
	Formal Concept Analysis
	Closed Patterns

	MV Multi-Instance Clustering using Closed Patterns
	Evaluation
	Data Sets and Experimental Setup
	Results and Discussion

	Conclusion and Future Work
	References

	Multi-View Data Analysis Techniques for Monitoring Smart Building Systems
	Introduction
	Background
	Multi-View Clustering
	Stream Clustering Algorithms
	Multi-Instance Learning
	Distance Measures
	Formal Concept Analysis
	Closed Patterns

	Related Work
	Materials and Methods
	Data
	Multi-View Data Analysis Approach
	Data Visualization and Analysis

	Experimentation and Analysis
	Data Preparation
	Experimental Setup and Results

	Applicability and Limitations
	Conclusion and Future Work
	References

	A Graph-based Multi-view Clustering Approach for Continuous Pattern Mining
	Introduction
	Related Work
	Multi-view Clustering Algorithms
	Stream Clustering Algorithms
	Multi-view Stream Clustering Algorithms

	Background
	Minimum Spanning Tree Clustering
	Non-negative Matrix Factorization
	Cluster Validation Measures

	MST-MVS Clustering Algorithm
	Multi-view data integration
	Extraction of multi-view patterns
	Transfer of knowledge through artificial nodes
	CNMF-based labelling algorithm
	Pattern-based labelling algorithm
	Computational Complexity

	Data and Experimental Settings
	Data
	Data Preparation
	Experiments and Validation
	Implementation and Availability

	Results and Discussion
	Algorithm configuration
	Tuning of algorithm parameters
	Evaluation of algorithm performance

	Conclusion and Future Work
	References

	Domain Adaptation Through Cluster Integration and Correlation
	Introduction
	Related Work
	Problem Statement
	Proposed Domain Integration Clustering Algorithm
	Range-based correlation measure
	The proposed algorithm

	Experimentation
	Public data
	Real-world use case

	Results and Discussion
	Public data
	Real-world use case

	Conclusions and Future Work
	References

	A Domain Adaptation Technique through Cluster Boundary Integration
	Introduction
	Related Work
	Proposed Algorithm
	Model Generalization and Cluster Representation
	Range-based Distance Measure
	DIBCA++
	Learning Algorithm
	Computational Complexity
	Algorithm Explainability
	Algorithm Applicability

	Data Sets
	Evaluation Measures
	Adjusted Rand Index
	Adjusted Mutual Information

	Experiments
	Data Pre-processing
	Experiments on Smart Logistics Use Case
	Experiments on HAR Use Case
	Experiments with DIBCA

	Result Analysis and Discussion
	Smart Logistics
	Human Activity Recognition
	Comparison with DIBCA
	Explainability

	Conclusion and Future Work
	References

	Putting Sense into Incomplete Heterogeneous Data with Hypergraph Clustering Analysis
	Introduction
	Related Work
	Hypergraph-based Clustering Analysis Method
	Step I: Hypergraph Construction
	Step II: Transformation to Simple Graph
	Step III: Cluster Integration and Analysis
	Step IV: Deriving KPIs to analyze performance

	Evaluation in Industrial Use-case
	Step I: Hypergraph Construction
	Step II: Transformation to Simple Graph
	Step III: Cluster Integration and Analysis
	Step IV: Deriving KPIs to analyze performance

	Conclusion
	References

